Reflection of thermoelastic wave on the interface of isotropic half-space and tetragonal syngony anisotropic medium of classes 4, 4/m with thermomechanical effect
Reflection of thermoelastic wave on the interface of isotropic half-space and tetragonal syngony anisotropic medium of classes 4,4/m with thermomechanical effect
摘要
The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.
The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.
参考文献10
-
1Nowacki W 1975 Dynamic Problems of Thermoelasticity.
-
2Abouelregall A E and Zenkour A M 2013 Chin. Phys. B 22 108102.
-
3Tleukenov S 1989 Investigation of the Thin Layer Influence of the Boundary Conditions, 2–6 August, 1989, Kurukshetra, India, p. 4.
-
4Tleukenov S 1989 The Structure of Propagator Matrix and it is Application in the Case of the Periodical Inhomogeneous Media, Kurukshetra, India, pp. 2–4.
-
5Tleukenov S 2004 Matrizant Method (Pavlodar: S. Toraigyrov Pavlodar State University) p. 148.
-
6Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402.
-
7Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402.
-
8Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294.
-
9Kluev V V, Anisimov V A, Katorgyn B I and Kutsenko A N 2004 Acoustic. Strain Metering p. 736.
-
10Verma K L 2008 Int. J. Aerosp. Mech. Eng. 2 86.
-
1SUN BinYong.On representations of real Jacobi groups[J].Science China Mathematics,2012,55(3):541-555.
-
2黄朝晖,姜焕清.π介子在大变形核上散射的高级形变效应[J].高能物理与核物理,1989,13(2):116-119.
-
3冯文杰,邹振祝.Elastic wave imaging of two dimensional targets[J].Journal of Harbin Institute of Technology(New Series),2000,7(1):61-64. 被引量:4
-
4李国彬.ANALYTIC SOLUTIONS OF SIMPLE WAVES[J].Applied Mathematics and Mechanics(English Edition),1993,14(11):1057-1062.
-
5郎丽丽.Dirichlet空间上对偶Hankel算子的乘积[J].山西师范大学学报(自然科学版),2013,27(4):8-10. 被引量:2
-
6刘祖华,包景东.超重核合成中的靶核形变效应[J].原子核物理评论,2004,21(4):370-373. 被引量:2
-
7杨静.Dirichlet空间上Hankel算子与对偶Hankel算子的乘积[J].通化师范学院学报,2017,38(4):24-26.
-
8Liqun Wang,Songming Hou,Liwei Shi.AN IMPROVED NON-TRADITIONAL FINITE ELEMENT FORMULATION FOR SOLVING THE ELLIPTIC INTERFACE PROBLEMS[J].Journal of Computational Mathematics,2014,32(1):39-57.
-
9石云龙,聂一行,陈鸿,吴翔.耗散量子隧道系统中的形变效应与热库维数的关系[J].物理学报,1993,42(10):1648-1653.
-
10田继善,刘九芬.一类指数型整函数插值算子的收敛性质(Ⅱ)[J].Chinese Quarterly Journal of Mathematics,1995,10(2):1-7.