期刊文献+

Successive lag synchronization on dynamical networks with communication delay 被引量:2

Successive lag synchronization on dynamical networks with communication delay
下载PDF
导出
摘要 In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期466-472,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.61004101) the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002) the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472) the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
关键词 successive lag synchronization dynamical network communication delay feedback control successive lag synchronization, dynamical network, communication delay, feedback control
  • 相关文献

参考文献23

  • 1Zhou Y, Zhu S Q and Wu L 2005 Commun. Thoer. Phys. 44 1076.
  • 2Gu X H, Zhu S Q and Wu D 2007 Commun. Thoer. Phys. 48 1055.
  • 3Kwon O M, Park J H and Lee S M 2011 Nonlinear Dyn. 63 239.
  • 4Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507.
  • 5Vieira M D 1999 Phys. Rev. Lett. 82 201.
  • 6Creveling D R, Jeanne J M and Abarbanel H D 2008 Phys. Lett. A 372 2043.
  • 7Xiao Y Z, Xu W, Li X C and Tang S F 2008 Chin. Phys. B 17 80.
  • 8Chen J and Liu Z R 2005 Appl. Math. Mech. 26 1132.
  • 9Wu W, Zhou W J and Chen T P 2009 IEEE Trans. Circuits Syst. I 56 829.
  • 10Ma Z J, Zhang S Z, Jiang G R and Li K Z 2013 Nonlinear Dyn. 74 55.

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部