期刊文献+

基于BP神经网络的锁模机构运行振动量的预测

Prediction of the Vibration of the Lock Mechanism Based on BP Neural Network
下载PDF
导出
摘要 利用BP神经网络建立吹瓶机锁模机构的运行参数的优化模型,通过BP神经网络模型结构的确定、BP神经网络模型的训练和BP神经网络模型的验证,预测出最优参数组合下锁模机构运行过程中的振动量,与现场实际测试结果进行对比,得到锁模机构的最优运行参数,节约资源,降低生产成本,指导实际生产。 This paper established an operating parameters optimization model of bottle blowing machine clamping mechanism by using BP neural network, including the determination of network model structure, the training of the network model, the verification of network model. Finally predict the vibration quantity under the optimal operation parameters combination by using the established BP neural network. Through with the actual test results, obtain the optimal operation parameters of clamping mechanism. It can save resources, reduce the production cost. So it has a certain guidance in practical production.
出处 《机电工程技术》 2016年第1期57-60,81,共5页 Mechanical & Electrical Engineering Technology
关键词 BP神经网络 锁模机构 优化模型 振动量 BP neural network locking mechanism optimization model vibration
  • 相关文献

参考文献4

二级参考文献10

  • 1欧长劲,郑子军,胡如夫.气辅注射成型工艺参数正交试验CAE模拟设定[J].塑料,2005,34(4):94-96. 被引量:3
  • 2马棚网机械资讯.注塑机原理[OL].www.mapeng.net,2008.
  • 3吴志刚.吹瓶机的锁模机构[P].中国专利号:200620061426.26.9.2007.
  • 4郭锡南.吹瓶机的锁模机构[P].中国专利号:200420045821.9,2005.
  • 5杨宗谕.吹瓶机的开合模机构[P].中国专利号:200720189803.1,2008.
  • 6刘资丰.锁模机构[P].中国专利号:96229207.9,1996.
  • 7Li C T, Isayev A I. Primary and secondary gas penetration during gas-assisted injection molding.part 1.Formulation and Molding [ J ]. Polymer Engineering and Science,2004,44 ( 5 ) : 983-991.
  • 8Li C T, Isayev A I, Lee H S, et al. Primary and secondary gas penetration during gas-assisted injection molding.part 2.Simulation and experimenl[ J ].Polymer Engineering and Science, 2004,44( 5 ):992-1002.
  • 9Jack Avery.气体辅助注塑成型原理[M].杨卫民,丁玉梅,译.北京:化学工业出版社,2003.
  • 10张友根.我国注塑机的特点及发展方向[J].上海塑料,2004,32(1):4-8. 被引量:20

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部