期刊文献+

皮肤镜图像计算机辅助诊断技术 被引量:6

Computer Aided Diagnosis Based on Dermoscopy Image for Skin Cancer
下载PDF
导出
摘要 皮肤癌的最有效治疗方法是早期诊断加积极有效切除原发灶,对预后和降低死亡率起决定性作用。然而,依靠肉眼对皮肤肿瘤进行诊断,主观性大,即使训练有素的专家其诊断也存在较大的差异。皮肤镜图像计算机辅助诊断系统正是解决这个问题的有效途径,其可以对病变组织自动提取、智能识别,具有定量测量和分析的功能,使诊断更加精确、客观。本文对皮肤镜图像计算机辅助诊断系统的研究现状进行综述,并对皮肤镜图像分析中所涉及的图像质量评价、预处理去噪、皮损分割、特征提取和分类识别等技术进行总结,最后给出未来发展趋势。为此方面的研究人员提供借鉴意义。 Early diagnosisfi)r skin cancer is very important to decrease the mortality. While,it is subjective to diagnose the skin tumor by naked eyes, and even though for experienced experts,the diagnosis results will be very different. Computer-aided diagnosis (CAD) system based on dermoscopy images can extract lesion objects and distinguish the be- nign from the malignant,which is object and accuracy. In this paper,the research sta-tus of CAD system is reviewed firstly;and then the dermoscopy image analysis technology including image quality assessment, preprocessing, lesion segmentation, feature extraction and classification are summarized; finally, the future development trend is given. This paper is a reference for the researchers in dermoscopy image.
出处 《中国医学文摘(皮肤科学)》 2016年第1期45-50,5,共6页 China Medical Abstracts(Dermatology)
关键词 皮肤镜图像 计算机辅助诊断 图像质量评价 图像分割 皮损分类 Dermoscopy image Computer-aided diagnosis Image quality assessment hnage segmentation Lesion classification
  • 相关文献

参考文献19

  • 1WHO I Skin cancers, World Health Organization [ On- line]. Available: hltp ://www. who. int/uv/faq/skincan- cer/en/index1, html.
  • 2涂平.对提高我国皮肤恶性肿瘤研究和诊疗水平的几点建议[J].国际皮肤性病学杂志,2009,35(1):1-2. 被引量:1
  • 3Sober , Burstein JM. Computerized digital image analy- sis:an aid for melanoma diagnosis [J ]. The Journal of Dermatology, 1994,21 ( 11 ) :885 - 890.
  • 4Xie FY, Li YN, Meng RS, et al. No-reference hair occlusion assessment for dermoscopy images based on distribu- tion feature [ J]. Computers in Biology and Medicine, 2015,59 : 106 - 115.
  • 5Lu YN,Xie FY,Wu YF,et al. No reference uneven illumina- tion assessment for dermoscopy images[J I. Signal Pro- cessing Leflers, IEEE,2015,22(5 ) :534 - 538.
  • 6Xie FY, Lu YN, Bovik AC, et al. Application-Driven No-ref- erence quality assessment for dermoscopy images with multiple distortions [ J ]. IEEE Trans. Biomedical Engineer- ing, DOI: 10.1109/TBME. 20]5. 2493580,201.5.
  • 7Taouil K, Ben Romdhane N, Bouhlel MS. A new automat- ic approach for edge detection of skin lesion images [ C]//Information and Communication Technologies, 2006. ICTTA'06.2nd. IEEE ,2006, 1:212 - 220.
  • 8Tanaka T, Yamada R, Tanaka AA, et al. A study on the image diagnosis of melanoma [ C ] //Engineering in Medicine and Biology Sociely, 2004. IEAABS'04.26th An- nual International Conference of the IEEE. IEEE, 2004,1 : 1597 - 1600.
  • 9Lee T,Ng V,Gallagher R,et al. Dullrazor :A software approach to hair removal from images [ J ]. Computers in Biology and Medicine, 1997,27 (6) :533 - 543.
  • 10Xie FY, Qin SY, Jiang ZG, et al. PDE-based unsupervised repair of hair-occluded information in dermoscopy ima- ges of melanoma [ J ]. Computerized Medical Imaging and Graphics,2009,33 (4) :275 - 282.

二级参考文献38

  • 1孙建方.皮肤肿瘤的研究现状及存在问题[J].国际皮肤性病学杂志,2007,33(3):127-128. 被引量:3
  • 2Yu M, Zloty D, Cowan B, et al. Superficial, nodular, and morpheiform basal-cell carcinomas exhibit distinct gene expression profiles. J Invest Dermatol, 2008, 128(7): 1797-805.
  • 3Hoseong Yang S, Andl T, Grachtchouk V, et al. Pathologic responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta-catenin signaling. Nat Genet, 2008, [Epub ahead of print]
  • 4O'Driscoll L, McMorrow J, Doolan P, et al. Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays. Mol Cancer, 2006, 5( 1 ): 74
  • 5Horwitz SM, Olsen EA, Duvic M, et al. Review of the treatment of mysosis fimgoides and sezary syndrome:a stage-based approach. J Natl Compr Canc Netw, 2008, 6(4): 436-442.
  • 6Bishop JN, Bataille V, Gavin A, et al. The prevention, diagnosis, referral and management of melanoma of the skin : concise guidelines. Clin Med, 2007, 7 (3): 283-290.
  • 7Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: a Cancer Journal for Clinicians, 2014, 64(1): 9-29.
  • 8Di Leo G, Liguofi C, Paolillo A, Sommella P. An improved proce- dure for the automatic detection of dermoscopy structures in digital ELMimages of skin lesions. In: Proceedings of the IEEE International Conference on V'Lrtual Environment, Human-Computer Interfaces, and Measurement Systems. 2008, 190-194.
  • 9Soyer H P, Smolle J, Kerl H, Stettnre H. Early diagnosis of malignant melanoma by surface microscopy. The Lancet, 1987, 330(8562): 803.
  • 10Korotkov K, Garcia R. Computerized analysis of pigmented skin le- sions: a review. Artificial Intelligence In Medicine, 2012, 56(2): 69-90.

共引文献1

同被引文献34

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部