摘要
Atmosphere–land interactions simulated by an LES model are evaluated from the perspective of heterogeneity propagation by comparison with airborne measurements. It is found that the footprints of surface heterogeneity, though as 2D patterns can be dissipated quickly due to turbulent mixing, as 1D projections can persist and propagate to the top of the atmospheric boundary layer. Direct comparison and length scale analysis show that the simulated heterogeneity patterns are comparable to the observation. The results highlight the model's capability in simulating the complex effects of surface heterogeneity on atmosphere–land interactions.
Atmosphere–land interactions simulated by an LES model are evaluated from the perspective of heterogeneity propagation by comparison with airborne measurements. It is found that the footprints of surface heterogeneity, though as 2D patterns can be dissipated quickly due to turbulent mixing, as 1D projections can persist and propagate to the top of the atmospheric boundary layer. Direct comparison and length scale analysis show that the simulated heterogeneity patterns are comparable to the observation. The results highlight the model's capability in simulating the complex effects of surface heterogeneity on atmosphere–land interactions.
基金
supported by the DFG Transregional Cooperative Research Centre 32 "Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation"