期刊文献+

基于多维PC扩展的多学科稳健优化算法研究 被引量:2

Robust multidisciplinary design optimization based on multidimensional polynomial chaos expansion
下载PDF
导出
摘要 针对多维不确定性下的多学科稳健设计优化问题,以随机不确定性因素的均匀分布和正态分布并存状况为例,提出一种新的以Legendre polynomials和Hermite polynomials为基础与多维多项式混沌方法,构建多维不确定性量化模型,完成多学科稳健设计优化框架的研究。同时将多维稳健优化方法应用于多学科设计优化的实际工程算例散货船优化论证中,并与文献的单维稳健优化方法进行比较。结果表明,在多维不确定性因素影响下,采用多维多项式混沌方法解决多学科稳健设计优化问题,其优化结果与确定性多学科设计优化结果相差不大,能够得到较为稳健的计算优化结果,有效减少和避免设计优化方案失效的可能性。 Aiming at the robust multidisciplinary design optimization with multidimensional uncertainty, by analyzing the coexistence situation of uniform distribution and normal distribution of stochastic uncertainties, the multidimensional polynomial chaos algorithm was derived through the analysis of legendre polynomials and Hermite polynomials, the multidimensional uncertainty quantification model was also constructed, the framework of robust muhidisciplinary design optimization was completed in this paper. At the same time, this proposed multidimensional polynomial chaos algorithm was applied to the practical engineering example of bulk carrier optimization with comparison to the conventional one-dimensional optimization method in the reference. The results showed that the optimization results were quite the same with the deterministic ones using the multidimensional polynomial chaos method for robust muhidiseiplinary design optimization problem, which can effectively reduce and avoid the failure possibility of optimization design.
出处 《舰船科学技术》 北大核心 2016年第1期132-136,149,共6页 Ship Science and Technology
基金 国家自然科学基金资助项目(51509114) 江苏省基础研究计划(自然科学基金)资助项目(BK2012696 BK2009722) 江苏高校高技术船舶协同创新中心资助项目(HZ2015011)
关键词 水路运输 随机不确定性 多学科设计优化 多维多项式混沌方法 不确定性量化 waterway transportation stochastic uncertainty muhidisciplinary design optimization multidimensional polynomial chaos uncertainty quantification
  • 相关文献

参考文献2

二级参考文献22

  • 1SOBIESCZANSKI-SOBIESKI J, HAFTKA R T. Multidisciplinary aerospace design optimization: Survey of recent developments[C]//Proc.34th Aerospace Sciences Meeting and Exhibit. Reno, NV, 1996.
  • 2HUANG C H. Development of multi-objective concurrent sub-space optimization and visualization method for multidisciplinary design [D]. New York, USA: Buffalo, 2003.
  • 3ALEXANDROV N, LEWIS R M. Analytical computational aspects of collaborative optimization for multidisciplinary design [J]. AIAA Journal, 2002, 40(2):301-309.
  • 4KROO I M,ALTUS S,BRAUN R D,GAGE P, SOBIESKI I. Multidisciplinary optimization methods for aircraft preliminary design[C]//AIAA 94-4325 -CP, 1994:697-707.
  • 5HE W., DIEZ M. and PERI D. et al. URANS study of delft catamaran total/added resistance, motions and sla- mming loads in head sea uncertainty quantification including irregular wave and for variable regular wave andgeometry[C]. Proceedings of the 29th Symposium on Naval Hydrodynamics. Gothenburg, Sweden, 2012.
  • 6JIN R., CHEN W. and SIMPSON T. W. Comparative studies of metamodelling techniques under multiple modeling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
  • 7SIMPSON T. W., PEPLINSKI J. D. and KOCH P. N. et al. Metamodels for computer-based engineering de- sign: Survey and recommendations[J]. Engineering with Computers, 2001, 17(2): 129-150.
  • 8MOUSAVIRAAD S. M., HE W. and DIEZ M. et al. Framework for convergence and validation of stochastic uncertainty quantification and relationship to determini- stic verification and validation[J]. International Jour- nal for Uncertainty Quantification, 2012, 3: 371-395.
  • 9WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936.
  • 10MATHELIN L., HUSSAINI M. Y. and ZANG T. A. et al. Uncertainty propagation for a turbulent, compressi- ble nozzle flow using stochastic methods[J]. AIAA Journal, 2004, 42(8): 1669-1676.

共引文献9

同被引文献25

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部