期刊文献+

升膜蒸发器管内传热性能的实验研究 被引量:1

Experimental study of heat transfer and flow visualization in climbing film evaporation pipe
下载PDF
导出
摘要 为了探究热流密度、真空度和流量对升膜蒸发器传热性能的影响,建立了升膜蒸发系统传热实验平台,实验所用升膜管管长2 800 mm,升膜管采用TP2紫铜管,工作介质为纯水,升膜管采用电加热方式加热;研究了热流密度(4.20 k W/m^2≤q≤16.81 k W/m^2)、流量(40 L/h≤M≤200 L/h)和真空度(20 k Pa≤P≤40 k Pa)对升膜管传热特性的影响。结果表明,升膜管沿轴线方向内壁温度是先急速增大到最大值然后再逐渐减小。当热流密度为6.05 k W/m^2,流量为80 L/h时,相对应的管内换热系数最大。流量为40~80 L/h时,流量越大相对应的管内换热系数越大。真空度越大,升膜管的内壁温度越低。 In order to explore the effect of heat flux, vacuum degree and flow rate on the heat transfer of climbing film evaporator, the heat transfer experimental platform of climbing film evaporation system is established. The length of the climbing film pipe is 2800 mm. The climbing film pipe is TP2 copper tube. The working medium is water. Electric heating is employed in the climbing film evaporation pipe. The effect of heat flux (4. 20 kW/m2 ≤ q ≤ 16. 81 kW/m2 ), flow rate(40 L/h≤M≤200 L/h) and vacuum degree(20 kPa≤P≤40 kPa) on fluid flow pattern and heat transfer of the climbing film pipe are studied. The results show that the inner wall temperature along axis direction of copper climbing film tube firstly increases rapidly to a maximum and then decreases gradually. When the heat flux density is 6. 05 kW/m2 and flow rate is 80 L/h, the corresponding tube heat transfer coefficient is the largest. When the flow rate is 40 L/h to 80 L/h, a greater flow rate leads to a larger tube heat transfer coefficient. But higher vacuum degree results in a lower inner surface temperature of copper climbing film tube.
出处 《现代化工》 CAS CSCD 北大核心 2016年第2期148-151,共4页 Modern Chemical Industry
基金 江苏省科技厅计划项目(BY2012102) 江苏省环保厅科研课题(2012003)
关键词 升膜蒸发器 紫铜管 换热系数 热流密度 climbing film evaporator copper tube heat transfer coefficient heat flux
  • 相关文献

参考文献8

二级参考文献14

  • 1张志娥.升膜蒸发器的设计与应用[J].石油炼制,1989,20(10):1-6. 被引量:2
  • 2杨国忠,王如竹,夏再忠.强化管管外升膜蒸发换热特性实验[J].工程热物理学报,2007,28(2):280-282. 被引量:4
  • 3J M Ha,G P Peterson.The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface.Journal of Heat Transfer,1996,1 18:747-755.
  • 4Wang JI,Ivan Catton.Enhanced Evaporation Heat Transfer in Triangular Grooves Covered with A Thin Fine Porous Layer.Applied Thermal Engineering,2001,21(17):1721.
  • 5H M Sabir,A C Bwalya.Experimental Study of Capillary-Assisted Water Evaporators for Vapour-Absorption Systems.Applied Energy,2003,71(1):47.
  • 6Wang DC,Xia ZZ,Wu JY,et al.Study of a Novel Silica Gel-Water Adsorption Chiller.Part I.Design and Performance Prediction.International Journal of Refrigeration,2005,28(7):1073.
  • 7Coulson J M, Mcnelly M J. Heat transfer in a climbing film evaporator. Part II[J]. Transactions of the Institution of Chemical Engineers, 1956, 34: 247-257.
  • 8Yang Luopeng, Chan Xue, Shen Shengqiang. Heat-transfer characteristics of climbing film evaporation in a vertical tube[J]. Experimental ThermalandFluidScienee, 2010, 34 (6): 753-759.
  • 9Lecturer. Experimental investigation of heat transfer coefficient in vertical tube rising film evaporator[J]. Mehran University Research Journal of Engineering & Technology, 2011, 30 (4): 539-548.
  • 10郭雪岩,李莉,夏清,林载祁,林纪方.透明管内的喷射升膜蒸发[J].化工学报,1997,48(3):369-373. 被引量:1

共引文献7

同被引文献86

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部