期刊文献+

一种基于GA-BP自优化的建筑能耗预测方法研究 被引量:2

A Self-optimizing Algorithm Based on GA-BP for Solving the Prediction of Building Energy
原文传递
导出
摘要 针对传统BP神经网络的建筑能耗预测中不变的预测影响因素难以保证预测的准确性和人工确定网络结构耗时长的问题,本文提出一种基于GA-BP的自优化的建筑能耗预测方法。该方法利用遗传算法对建筑能耗BP神经网络预测模型的输入因素和网络结构进行自动寻优确定,有效地减少了最佳预测模型的设计时间,节省了人工实验成本。利用该方法建设的建筑能耗预测系统已应用在某建筑群的能耗预测中,有效地减少了建筑能源浪费。 In traditional prediction of building energy based on BP neural network, the influent factors and the network structure were manually determined. And it always took a lot of time and lead to inaccurate results. In this paper, we proposed a new self-optimizing algorithm based on genetic algorithm (GA) and BP neural network algorithm. The algorithm used GA to determine input influent factors and neural network structure, and saved a lot of time and cost. The algorithm was used to develop the prediction system of building energy, which has been implemented for some buildings and help to reduce energy waste.
出处 《智能建筑》 2016年第2期48-52,共5页 Intelligent Building
关键词 建筑能耗预测 BP神经网络 遗传算法 Prediction of Building Energy, BP Neural Network, GeneticAlgorithm
  • 相关文献

参考文献6

二级参考文献36

  • 1陈淑琴,李念平,付祥钊,刘俊跃.住宅建筑能耗统计方法的研究[J].暖通空调,2007,37(3):44-48. 被引量:17
  • 2Curtiss P S . Energy management in central HVAC plants using neural networks [ J ]. ASHARE Trains, 1994,1 00 ( 1 ) :476 - 493.
  • 3李敏强,寇纪淞,林丹,等.遗传算法的基本原理及应用[M].北京:科学出版社,2004.2.
  • 4李爱旗,白雪莲.居住建筑能耗预测分析方法的研究[J].建筑科学,2007,23(8):32-35. 被引量:14
  • 5邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002..
  • 6庞浩.计量经济学.北京:科学出版社.2010.
  • 7GeorgeE.P.Box[美],GwilymM.Jenkins[英].GregoryC.Reinsel[美].时间序列分析:预测与控制.顾岚译.北京:中国统计出版社,1997.
  • 8USA Dept. of Energy (2008).Energy Plus : energy simulation software [ EB/OL ].2008.http ://www.eere.energy.gov/buildings/energyplus.
  • 9Saha GP,J Stephenson.A model of residential energyuse in New Zealand.Energy. 1980,5 (2).
  • 10A,AzadehS.F.Ghaderi,S.Tarverdian,M. Saberi. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption [J].Applied Mathematics and Computation, 2007, (186):1731-1741.

共引文献49

同被引文献21

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部