期刊文献+

紫外有机发光器件的激子形成区域优化与掺杂调控

Optimization of Excimer Forming Zone and Doping Engineering in Ultraviolet Organic Light-emitting Device
下载PDF
导出
摘要 采用空穴传输兼发光层CBP和电子传输兼发光层TAZ构建了紫外有机电致发光器件(UVOLED),通过调控功能层厚度可以优化激子形成区域,进而改善器件性能。实验结果表明:CBP厚度的变化对器件性能影响甚微,而TAZ厚度变化则有显著影响。当CBP和TAZ厚度分别为50 nm和30 nm时,获得了最大辐照度为4.4 m W/cm2@270 m A/cm2、外量子效率(EQE)为0.94%@12.5 m A/cm2,发光来自于CBP主发光峰~410nm以及TAZ肩峰~380 nm的UVOLED器件。在此基础上,通过在CBP/TAZ界面引入超薄[CBP∶TAZ]掺杂层可以加速激子复合,降低器件驱动电压,同时还有利于改善载流子平衡性,提高发光效率(最大EQE达到了0.97%@20 m A/cm2)而不影响光谱特性。 Ultraviolet organic light-emitting devices (UVOLEDs) were constructed by using hole- transport-emitting layer of 4,4'-bis (carbazol-9-yl) biphenyl (CBP) and electron-transport-emitting layer of 3-(4-biphenyl) 4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ). The excimer forming zone was optimized by adjusting the functional layer thickness, which contriuted to device perform- ance improvement. Our results indicate that the thickness variation of CBP has negligible effect on device performance while that of TAZ shows considerable effect. The maximum radiance of 4.4 mW/cm2@ 270 mAfcm2 and external quantum efficiency (EQE) of 0.94% @ 12.5 mA/cm2 are achieved in UVOLED with optimal thickness of 50 nm CBP and 30 nm TAZ. The electrolumines- cence peak of -410 nm and shoulder of - 380 nm, resulted from CBP and TAZ, respectively, are observed. Moreover, an ultrathin layer of [ CBP: TAZ] inserted between CBP and TAZ accelerates exeimer recombination rate and reduces driving voltage. Meanwhile, the carrier balance is improved aud thus device efficiency is slightly promoted ( the maxinunn EQE reaches 0.97% @ 20 mA/cm2 ) without altering spectrum characteristics.
出处 《发光学报》 EI CAS CSCD 北大核心 2016年第2期213-218,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(61275041 61565003) 广西教育厅重点项目(KY2015ZD046) 中山市科技计划(2014A2FC305 2014A2FC306)资助项目
关键词 紫外有机电致发光器件 载流子调控 激子 掺杂 ultraviolet organic light-emitting device carrier engineering excimer doping
  • 相关文献

参考文献1

二级参考文献22

  • 1BaiJ J, Wu X M, Hua Y L, MuX, Bi WT, Su YJ,JiaoZQ, Shen L Y, . Yin S G and ZhengJ J 2013 Chin. Phys. B 22 047806.
  • 2Wen S W, Lee M T and Chen C H 2005J. Display Technology 1 90.
  • 3Su SJ, Gonmori E, Sasabe Hand KidoJ 2008 Adv. Marer. 204189.
  • 4Kosrov Y, Albano C Rand Rao G 2000 Biorechnol. Bioeng. 70473.
  • 5SipiorJ, Carter G M, LakowiczJ Rand Rao G 1997 Rev. Sci. Instrum. 682666.
  • 6Chao T C, Lin Y T, Yang C Y, Hung T S, Chou H C, Wu C C and Wong K T 2005 Adv. Mater. 17992.
  • 7Yang Y, Cohn P, Eom S H, Abboud K A, Castellano R K and XueJ 2013J. Mater. Chem. C 1 2867.
  • 8Wong K T, Wang C F, Chou C H, Su Y 0, Lee G Hand Peng S M 2002 Org. Lett. 4 4439.
  • 9Patel 0 G, Ohnishi Y, Yang Y, Eom S H, Farley R T, Graham K R, XlieJ, Hirata S, Schanze K S and ReynoldsJ R 2011J. Polym. Sci. Parr B: Polym. Phys. 49 557.
  • 10Matsushima T and Adachi C 2008J. Appl. Phys. 103034501.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部