期刊文献+

双波泵浦非对称量子阱的光学整流效应 被引量:3

Nonlinear Optical Rectification of Asymmetric Quantum Well Based on Dual Pump
下载PDF
导出
摘要 为了实现基于光整流方式的室温下宽调谐高效率太赫兹源,设计了一种适于双波长CO2激光器共振子带跃迁泵浦的双阱嵌套形非对称量子阱结构,结构组分为Al0.5Ga0.5As/Ga As/Al0.2Ga0.8As,采用密度矩阵及迭代方法计算了其二阶非线性光整流系数χo(2)表达式,在导带为抛物线形和非抛物线形两种条件下对χo(2)进行对比研究。计算结果表明,其偶极跃迁矩阵元随量子阱总阱宽的增大而逐渐减小。当固定量子阱总阱宽及其中一束泵浦光波长不变时,χo(2)随着另一束泵浦光波长的增加,呈现出先增大后减小的变化趋势。当深阱为7 nm、总阱宽为23 nm、两束泵浦光相等为10.64μm时,χo(2)达到最大值5.925×10-6m/V;随着总阱宽的增大,χo(2)曲线呈现"红移"现象,其原因为量子限制效应导致了不同阱宽条件下的量子阱能级值差不同,从而造成满足泵浦光光子能量与能级差共振条件的变化。导带为抛物线形和非抛物线形两种条件下的χo(2)的最大值对应泵浦光波长基本相同,χo(2)数值上的差异主要由跃迁矩阵元的不同导致。 Based on excitation from a dual-wavelength CO2 laser, the optical rectification (OR) in a multiple asymmetric quantum well (AQW) was theoretically investigated by using the compact den- sity matrix approach and the iterative method. The numerical results for the typical Al0.5 Ga0.5 As/ GaAs/Al0.2Ga0.8As material show that the dipole matrix element decreases with the increasing well width of the AQW. Moreover, the optical rectification coefficient depends sensitively on two pump light wavelengths and well width of the AQW. The physical origin of this shift in optical rectification curve is the quantum confinement effect in the AQW system which causes the separation of energy levels and the changes in resonant condition. For an AQW of 7 nm deep well-width and 23 nm shallow well-width, the maximum of optical rectification coefficient for the AQW is 5. 925 × 10-6 m/V when the two pump wavelengths are all 10.64 μm. The characteristics of optical rectification are al- so analyzed on parabolic and non-parabolic energy-band conditions in detail.
出处 《发光学报》 EI CAS CSCD 北大核心 2016年第2期224-229,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(61271066) 山东科技大学人才引进科研启动基金(2014RCJJ020)资助项目
关键词 光学整流 子带跃迁 非对称量子阱 太赫兹波 optical rectification subband transitions asymmetric quantum well THz-wave
  • 相关文献

参考文献3

二级参考文献63

  • 1陈云琳,袁建伟,闫卫国,周斌斌,罗勇锋,郭娟.准相位匹配PPLN倍频理论研究与优化设计[J].物理学报,2005,54(5):2079-2083. 被引量:15
  • 2张显斌,碇智文,陈颍丽,施卫,依藤弘昌.高性能85mm短腔光学参变振荡器的THz电磁波输出特性分析[J].光学学报,2006,26(4):616-620. 被引量:8
  • 3Jung-Seung Yang, Hassanet Sodabanlu, Masakazu Sugiyama, Yoshiaki Nakano and Yukihiro Shimogaki, Appl. Phys. Lett. 95, 162111(2009).
  • 4Hai-Yan Zhu, Tong-Yi Zhang and Wei Zhao, J. Appl. Phys. 105, 043518 (2009).
  • 5P. K. Kandaswamy, H. Machhadani, C. Bougerol, S. Sakr, M. Tchernycheva, F. H. Julien and E. Monroy, Appl. Phys. Lett. 95, 141911 (2009).
  • 6M. Tonouchi, Nat. Photonics 197, 105 (2007).
  • 7Yao Jian-Quan, Wang Jing-Li, Zhong Kai, Wang Ran, Xu De-Gang, Ding Xin, Zhang Fan and Wang Peng, Journal of Optoelectronics·Laser 21, 1582 (2010). (in Chinese).
  • 8Zhang Peng-Cheng, Qi Chang, Jiang Xian-Yang, Shi XinZhi and Wang Gao-Feng, Journal of Optoelectronics·Laser 22, 1313 (2011). (in Chinese).
  • 9B. S.Williams, Nat. Photonics 1, 517 (2007).
  • 10M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies and E. H. Linfield, Opt. Express 16, 3242 (2008).

共引文献5

同被引文献3

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部