期刊文献+

全内角反射技术与转盘式共聚焦技术在细胞膜表面的成像比较 被引量:2

Comparison of TIRF and SDC on the Imaging of Cell Surface
原文传递
导出
摘要 转盘式共聚焦成像是一种高速、高分辨率成像技术,可以在高时间分辨率和空间分辨率的水平观察固定细胞内目标蛋白的分布及活细胞内目标蛋白的动态变化。全内角反射成像是一种观察距离玻片表面某个限定区域内蛋白质的分布和变化的成像技术,常用于观察固定细胞以及活细胞表面的亚细胞结构。该文以中性粒细胞和神经胶质瘤细胞作为观察对象,通过观测固定细胞膜表面蛋白质的分布以及追踪膜标记活细胞的动态变化对两种成像方法进行了比较。结果发现,就目前技术水平而言,二者均可以采集到清晰的细胞边缘,但全内角反射可以拍摄到更清晰的细胞膜表面结构,它在动态拍摄过程中光漂白相对较低,在快速捕捉过程中能够更加全面的捕捉到一个完整的运动过程。 Spinning disk confocal microscopy (SDC) is an imaging technique of high speed and resolution, and is a method to observe interested protein distribution in fixed cells and intracellular interested protein dynamics at high spatial and temporal resolution. A total internal reflection fluorescence (TIRF) microscope allows us to observe localization and dynamics of proteins in a restricted region from the interface of the coverslip and has been widely used for optical imaging of subcellular structure at the cell surface in both fixed and living cells. In this study, neutrophils and glioma cells were taken as observation objects, and two optical imaging approaches were compared on cell surface or live cell imaging. The of them can be used to get high resolution images of cell results indicate that, on the current technical level, both edges, but TIRF can capture higher-resolution images of cell surface and show lower photobleaching during Real-time imaging. Also, TIRF can help to observe an intact movement process better when capturing a rapid phenomenon.
出处 《中国细胞生物学学报》 CAS CSCD 2016年第1期65-71,共7页 Chinese Journal of Cell Biology
基金 实验血液学国家重点实验室自由申请项目(批准号:ZZ13-05)资助的课题~~
关键词 全内角反射 转盘式共聚焦 细胞成像 TIRF SDC cell-imaging
  • 相关文献

参考文献11

  • 1Vyas JM. Insights into dendritic cell function using advanced imaging modalities. Virulence 2012; 3(7): 690-4.
  • 2Winter PW, Shroff H. Faster fluorescence microscopy: Advances in high speed biological imaging. Curt Opin Chem Biol 2014; 20: 46-53.
  • 3Brodovitch A, Limozin L, Bongrand P, Pierres A. Use of TIRF to monitor T-lymphocyte membrane dynamics with submicrometer and subsecond resolution. Cell Mol Bioeng 2015; 8(1): 178-86.
  • 4Yamamura H, Suzuki Y, Imaizumi Y. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. J Pharmacol Sci 2015; 128(1): 1-7.
  • 5Belyy V, Yildiz A. Processive cytoskeletal motors studied with single-molecule fluorescence techniques. FEBS Lett 2014; 588(19): 3520-5.
  • 6Toomre D. Alignment and calibration of total internal reflection fluorescence microscopy systems. Cold Spring Harb Protoc 2012; 2012(4): 504-9.
  • 7Stehbens S, Pemble H, Murrow L, Wittmann T. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymo12012; 504: 293-313.
  • 8Dong X, Wu D. Methods for studying neutrophil chemotaxis. MethodsEnzymo12006; 406: 605-13.
  • 9Jaiswal JK, Simon SM. Imaging single events at the cell membrane. Nat Chem Bio12007; 3(2): 92-8.
  • 10Lecointre C, Desrues L, Joubert JE, Perzo N, Guichet PO, Le Joncour V, et al. Signaling switch of the urotensin Ⅱ vasosactive peptide GPCR: Prototypic chemotaxic mechanism in glioma. Oncogene 2015; 34(39): 5080-94.

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部