期刊文献+

水平管气液二相分层流移动壁面模型的改进 被引量:1

Improvement of moving-wall model for horizontal gas-liquid two-phase stratified flow
下载PDF
导出
摘要 针对基于Standard k-ε湍流模型的移动壁面模型在预测水平管气液二相分层流气相封闭关系时的不足,利用Launder-Spalding和Launder-Sharma低雷诺数k-ε湍流模型对移动壁面模型进行改进,其中湍流黏度和湍流雷诺数由修正湍流耗散率替代原定义的耗散率。通过数值模拟结果拟合出新的气壁和界面摩擦因子Blasius形式公式,计算结果发现,湍流模型的选择对固定壁面和移动壁面剪切的预测都有明显影响,其中Launder-Spalding低雷诺数k-ε湍流模型得到的气相封闭关系预测精度最高,在气、液相雷诺数9 000≤ReG≤50 000和20 000≤ReL≤30 000,压降预测相对均根误差为10.6%,为理论和实验研究提供了有价值的参考。 To modify unreasonable gas-flow closure relationship of horizontal stratified gas-liquid flow by moving- wall model based on standard k-ε turbulence model, Launder-Sharma and Launder-Spalding low Reynolds number k-ε models, in which the turbulence viscosity and turbulence Reynolds number were replaced by modified dissipation rate, were used for improving moving-wall model. New Blasius type equations for both gas-wall and interfacial fraction factors were derived from calculation results. The calculation results showed that the turbulence model had great effects not only on fixed wall but also on moving wall, and Launder-Spalding low Reynolds number k-ε model, which had a 10.6% relative root error for gas pressure drop prediction while gas and liquid Reynolds numbers respectively within 9 000 ≤ ReG ≤ 50 000 and 20 000 ≤ ReL ≤ 30 000, was in the best agreement in gasflow closure prediction. The present work provided valuable reference for theoretical and experimental researches.
出处 《化学工程》 CAS CSCD 北大核心 2016年第2期58-63,共6页 Chemical Engineering(China)
基金 国家自然科学基金资助项目(51201009)
关键词 气液二相分层流 CFD建模 湍流模型 移动壁面模型 剪切应力 压降 gas-liquid stratified flow CFD modeling turbulence model moving-wall model shear stress pressure drop
  • 相关文献

参考文献16

  • 1ULLMANN A, BRAUNER N. Closure relations for two- fluid models for two-phase stratified smooth and stratified wavy flows [ J ]. International Journal of Muhiphase Flow, 2006, 32(1): 82-105.
  • 2TAITEL Y, DUKLER A E. A model for predicting flow regime transitions in horizontal and near horizontal gasliquid flow [J]. AIChE Journal, 1976, 22(1) : 47-55.
  • 3MEKNASSI F, BENKIRANE R, LINE A, Masbernat L. Numerical modeling of wavy stratified two-phase flow in pipes [ J ]. Chemical Engineering Science, 2000, 55 (20) : 4681-4697.
  • 4VLACHOS N A, PARAS S V, KARABELAS A J. Prediction of holdup, axial pressure gradient and wall shear stress in wavy stratified and stratified/atomilization gas/liquid flow [ J]. International Journal of Multiphase Flow, 1999, 25(2) : 365-376.
  • 5HART J, HAMERSA P J, FORTUIN J M H. Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup [ J ]. International Journal of Muhiphase Flow, 1989, 15(6) : 947-964.
  • 6MOUZA A A, PARAS S V, KARABELAS A J. CFD code application to wavy stratified gas-liquid flow [ J ]. Chemical Engineering Research and Design, 2001, 79 (5) : 561-568.
  • 7GHORAI S, NIGAM K D P. CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes [ J ]. Chemical Engineering and Processing, 2006, 45( 1 ) : 55-65.
  • 8SIDI-ALI K, GATIGNOL R. Interfacial friction factor determination using CFD simulations in a horizontal stratified two-phase flow [ J ]. Chemical Engineering Science, 2010, 65(18): 5160-5169.
  • 9LAUNDER B E, SHARMA B L. Application of the energy-dissipation of turbulence to calculation of low near a spinning disc [ J ]. Letters in Heat Mass Transfer, 1974, 1(2) :131-138.
  • 10LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows [ J ]. Computer Methods Applied Mechanics Engineering, 1974, 3 (2) : 269-89.

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部