期刊文献+

CoCrFeMnNi高熵合金单向拉伸的组织和取向演变 被引量:5

Microstructure and grain orientation evolution of CoCrFeMnNi high-entropy alloy during uniaxial tensile deformation
下载PDF
导出
摘要 采用电子背散射衍射技术,研究了室温下CoCrFeMnNi高熵合金在单向拉伸(真应变量为0%~12.4%)过程中的组织和取向演变。结果表明,初始组织表现为等轴晶形貌,退火孪晶形成于等轴晶粒内;拉伸后,等轴晶粒被拉长,小角度晶界急剧增多且主要分布在细小孪晶界和大角度晶界附近。该合金通过位错滑移的方式协调其室温下的拉伸变形。在变形过程中,晶粒取向不均匀转动,但晶粒内基体和孪晶的取向大体上沿着相同的方向转动,基体拉伸轴的转动规律为,反极图〈112〉和〈111〉附近的基体拉伸轴向〈111〉方向转动,符合Taylor模型;反极图中心和〈101〉附近的基体拉伸轴向〈001〉-〈111〉连线转动,符合Sachs模型;反极图〈001〉附近的基体拉伸轴转动无明显规律。 The evolution of microstructure and grain orientation of CoCrFeMnNi high entropy alloy during tensile deformation were investigated using electron backscatter diffraction technology.The results show that the original microstructure exhibits equiaxed grain morphology and possesses annealing twinning in the equiaxed grain interior,while the tensile deformation makes equiaxed grains be elongated and results in quick formation of low angle grain boundaries mainly distributed around the twinning boundaries and high angle grain boundaries.During tensile deformation at room temperature which is coordinated through dislocation glide,the grain orientation rotations are inhomogeneous,but the matrix and twinning within individual grain rotate along approximately similar tendency.For matrices,the tensile axes close to〈112〉and〈111〉rotate toward〈111〉following Taylor model;the tensile axes close to 〈101〉 and close to middle in the stereographic triangle rotate to the line of 〈001〉-〈111〉following Sachs model;the tensile axes close to〈001〉 rotate without any significant regularities.
出处 《塑性工程学报》 CAS CSCD 北大核心 2016年第1期99-103,共5页 Journal of Plasticity Engineering
基金 福建省高校产学合作重大项目(2014H6005)
关键词 高熵合金 单向拉伸 背散射电子衍射 微观组织 取向转动 high-entropy alloy uniaxial tension electron backscatter diffraction technology microstructure orientation rotation
  • 相关文献

参考文献16

  • 1A L Greer.Confusion by design[J].Nature,1993.366(25):303-304.
  • 2J W Yeh,S K Chen,S J Lin.Nanostructured high entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004.6(5):299-303.
  • 3Q H Tang,Y Huang,Y Y Huang,et al.Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing[J].Materials Letters,2015.151:126-129.
  • 4Y Zhang,T T Zuo,Z Tang,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014.61(8):1-93.
  • 5L Jiang,Y P Lu,Y Dong,et al.Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot[J].Intermetallics,2014.44(1):37-43.
  • 6张松,吴臣亮,王超,伊俊振,张春华.铁单元素基合金表面激光高熵合金化涂层的制备[J].金属学报,2014,50(5):555-560. 被引量:18
  • 7H Zhang,Y Z He,Y Pan.Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5high-entropy alloy by martensite strengthening[J].Scripta Materialia,2013.69(4):342-345.
  • 8W H Liu,Y Wu,J Y He,et al.Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J].Scripta Materialia,2013.68(7):526-529.
  • 9B Cantor,I T H Chang,P Knight,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004.375(21):213-218.
  • 10F Otto,A Dlouhy,C Somsen,et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta Materialia,2013.61(15):5743-5755.

二级参考文献16

  • 1LIU XueFeng,WU YuHui,XIE JianXin.Deformation behavior of Cu-12wt%Al alloy wires with continuous columnar crystals in dieless drawing process[J].Science China(Technological Sciences),2009,52(8):2232-2236. 被引量:6
  • 2张春华,张松,文効忠,刘常升,才庆魁.6061Al合金表面激光熔覆Ni基合金的组织及性能[J].稀有金属材料与工程,2005,34(5):701-704. 被引量:33
  • 3刘雪峰,何勇,毕重武,谢建新.镍钛形状记忆合金线材无模拉拔成形过程的电磁场和温度场模拟[J].稀有金属,2005,29(5):762-767. 被引量:10
  • 4P Yang,F E Cui, J H Bian, G Gottstein. Relationships between deformation mechanisms and initial textures in polycrystalline magnesium alloys AZ31 [J]. Transactions of Nonferrous Metals Society of China (English Edition), 2003.13(2) : 280-284
  • 5A Staroselsky, L Anand. A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B[J]. International Journal of Plasticity, 2003. 19 (10) : 1843-1864
  • 6S R Agnew, C N Tome, D W Brown, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling[J]. Scripta Materialia, 2003. 48(8) :1003-1008
  • 7D P Field. Recent advances in the application of orientation imaging[J]. Ultramicroscopy, 1997.67 (1-4) : 1-9
  • 8M D Nave, M R Barnett. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta Materialia, 2004.51(9):881-885
  • 9B C Wonsiewicz,W A Backofen. Plasticity of magnesium crystals[J]. Transaction of the metallurgical society of AIME, 1967. 239(September) : 1422-1431
  • 10M Kamaya, A J Wilkinson, J M Titchmarsh. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction[J]. Nuclear Engineering and Design, 2005. 235(6) : 713-725

共引文献23

同被引文献62

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部