期刊文献+

基于支持向量回归机及混沌理论的气田监测预警技术 被引量:1

Gas Field Pre-alarm Technique Based on Support Vector Regression and Chaos Theory
下载PDF
导出
摘要 针对气田开发过程中安全监测预警问题,结合支持向量回归机(Support Vector Regression,SVR)和相空间重构,提出了气田监测预警方法。对训练样本进行相空间重构,提取用于SVR离线训练的自变量和因变量。通过遗传算法获取最佳SVR参数,采用序列最小优化算法(Sequential Minimal Optimization,SMO)算出Lagrange乘子,构造在线预测模型,对监测信号进行预测,判别未来10个时间步长内监测值是否超出安全范围,在时间相对较充足的情况下采取有效措施,避免事故的发生。现场应用表明,所述方法在混沌信号预测方面具有较高精度,可为气田监测提供准确的预警信息。 Aiming at the prealarm problem of-safety inspection during the development of gas fields, a novel method combined Support Vector Regression (SVR) and Phase Space Reconstruction (PSR) is proposed. Firstly, Independent and dependent variables are obtained through the PSR of training samples. Secondly, SVR parameters are obtained through Genetic Algorithm(C-A). Then, Lagrange multipliers are calculated by Sequential Minimal Optimization(SMO) algorithm, and then an online prediction model can be constructed. Finally, the future ten monitoring data are predicted for prealarming to avoid accidents in case of sufficient time. Simulation and field data processing show that the method has higher precision for chaotic signal prediction, and the accurate pre-alarming information can be provided for gas filed monitoring.
出处 《油气田地面工程》 2016年第2期1-3,11,共4页 Oil-Gas Field Surface Engineering
基金 国家科技重大专项"大型油气田及煤层气开发"(2011ZX05017-004)
关键词 气田开发 预警 支持向量回归机 混沌理论 遗传算法 监测 gas field development pre-alarm support vector regression: Chaos theory genetic Algorithm: monitoring
  • 相关文献

参考文献13

  • 1VASILEVSKIY A N DASHEVSKY Y A. Gravity monitor- ing at oil and gas fields: data inversion and errors[J]. Rus- sian Geology and Geophysics, 2015, 56 (5) : 762-772.
  • 2MA Xiaolei, TAO Zhimin, WANG Yinhai, et al. Long short-term memory neural network for traffic speed predic- tion using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54 (1): 187-197.
  • 3ZHENG Yanan, ZHENG Xilai, GAO Zengwen, et al. Prediction of seawater quality in rigs-to-reefs area based on grey systems theory procedia environmental sciences[J]. Procedia Environmental Sciences, 2013, 18 (1): 236-242.
  • 4KIM Yooil, KIM Junghyun, KIM Yonghwan. Time series prediction of nonlinear ship structural responses in irregular seaways using a third-order Volterra model[J]. Journal of Fluids and Structures, 2014, 49 (8) : 322-337.
  • 5WU Ji, CHEE Keongchan. Prediction of hourly solar radia- tion using a novel hybrid model of ARMA and TDNN[J]. So- larEnergy, 2011, 85 (5): 808-817.
  • 6LINS I D, DROGUETT E L, MOURA M D C , et al. Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector re- gression[J]. Reliability Engineering & System Safety, 2015, 137 (1): 120-128.
  • 7HAN Li, ROMERO C E, ZHENG Yao. Wind power fore- casting based on principle component phase space reconstruc- Lion[J]. Renewable Energy, 2015, 81 (1): 737-744.
  • 8WEI Zhao, TAO Tao, ENRICO Zio. System reliability prediction by support vector regression with analytic selec- tion and genetic algorithm parameters selection[J]. Applied Soft Computing, 2015, 30 (4): 792-802.
  • 9PLATT J C. Sequential Minimal Optimization: A fast algo- rithm for training support vector machines[J]. Advances in Kernel Methods-support Vector Learning, 1998, 208 (1): 212-223.
  • 10FAN Rongen, CHEN Paihsuen, LIN Chihjen. Working set selection using second support vector machines[J] order information for training Journal of Machine Learning Research, 2005, 6 (4): 1889-1918.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部