期刊文献+

一种基于指数降维的监督型稀疏保持典型相关分析算法

An improved supervised sparsity preserving CCA algorithm based on exponential dimensionality reduction
下载PDF
导出
摘要 提出一种基于指数降维的监督型稀疏保持典型相关分析算法.通过将样本的类别信息与样本特征相融合,克服以往引入监督信息导致重建误差增大的缺陷,同时实现类内相关的最大化与类间相关的最小化;针对传统算法处理稀疏信号的高维小样本问题的瓶颈,改进算法对总体散布矩阵做指数化的处理,既保留有效信息,又将总体散布矩阵非奇异化,克服PCA预处理散布矩阵导致有效信息流失的缺陷.依据ORL,Yale,AR和FERET人脸数据库而进行的仿真实验表明,该算法比其他的典型相关分析方法具有更好的识别效果. An improved supervised sparsity preserving canonical correlation analysis algorithm based on exponential dimensionality reduction was proposed. The problem that the fitting error increased while adding supervised information to the SPCCA was solved by the fusion of the class label information and sample feature. The local manifold structure of the data was realized at the same time. Aimed at the problem of traditional algorithm in dealing with small sample of high-dimensiona sparse signal,index scattering matrix was used to retain effective information while building the non-singular scattering matrix. It overcame the default of effective information losses while using PCA to extract principal features of the scattering matrix.The experimental results on ORL,Yale,AR and FERET face databases showed that the proposed algorithm was better than related canonical correlation analysis methods in recognition effect.
作者 蒋文 齐林
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2015年第5期93-97,共5页 Journal of Zhengzhou University of Light Industry:Natural Science
基金 国家自然科学基金项目(61210005 61331021)
关键词 典型相关分析(CCA) 稀疏保持(SPP) 指数降维 特征提取 人脸识别 canonical correlation analysis(CCA) sparsity preserving projection(SPP) exponential dimensionality reduction feature extraction face recognition
  • 相关文献

参考文献21

  • 1Sun Q S,Zeng S G,Liu Y,et al.A new method of feature fusion and its application in image recognition[J].Pattern Recognition,2005,38(12):2437.
  • 2Kim T K,Cipolla R.Canonical correlation analysis of video volume tensors for action categorization and detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(8):1415.
  • 3Correa N M,Eichele T,Adali T,et al.Mult-set canonical correlation analysis for the fusion of concurrent single trial EPR and fuctional MRI[J].Neurolmage,2010,50(4):1438.
  • 4孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 5Zheng W M,Zhou X Y,Zou C R,et al.Facial expression recognition using kernel canonical correlation analysis[J].IEEE Transactions on Neural Networks,2006,17(1):233.
  • 6Sun T K,Chen S C,Yang J Y,et al.A novel method of combined feature extraction for recognition[C]∥Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,Piscataway:IEEE,2008:1043.
  • 7Sun Q S,Liu Z D,P.A.Heng P A,et al.A theorem on the generalized canonicalprojective vectors[J].Pattern Recognition,2005,38(3):449.
  • 8洪泉,陈松灿,倪雪蕾.子模式典型相关分析及其在人脸识别中的应用[J].自动化学报,2008,34(1):21-30. 被引量:25
  • 9彭岩,张道强.半监督典型相关分析算法[J].软件学报,2008,19(11):2822-2832. 被引量:32
  • 10Sun T K,Chen S C.Locality preserving CCA with applications to data visualization and pose estimation[J].Image and Vision Computing,2007,25(5):531.

二级参考文献81

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 3张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 4Borga M, Knutsson H. Canonical correlation analysis in early vision Processing. In: Proc. of the 9th European Symp. on Artificial Neural Networks. 2001. 309-314.
  • 5Gao HB, Hong WX, Cui JX, Xu YH. Optimization of principal component analysis in feature extraction. In: Proc. of the IEEE Int'l Conf. on Mechatronics and Automation. 2007.3128-3132.
  • 6Zheng WM, Zhou XY, Zou CR, Zhao L. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. on Neural Networks, 2006,17(1):233-238.
  • 7Loog M, B. van Ginneken B, Duin RPW. Dimensionality reduction by canonical contextual correlation projections. In: Proc. of the European Conf. on Computer Vision. 2004. 562-573.
  • 8Hel-Or Y. The canonical correlations of color images and their use for demosaicing. Technical Report, HPL-2003-164(R1), HP Labs., 2004.
  • 9Friman O, Carlsson J, Lundberg P, Borga M, Knutsson H. Detection of neural activity in functional MRI using canonical correlation analysis. Magnetic Resonance in Medicine, 2001,45(2):323-330.
  • 10Knutsson H, Borga M, Landelius T. Learning multidimensional signal processing. In: Proc. of the 14th Int'l Conf. on Pattern Recognition. 1998. 1416-1420.

共引文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部