期刊文献+

随机巨灾索赔相依风险模型的动态最优再保险 被引量:3

Dynamic optimal reinsurance for stochastic catastrophe with dependent claim risks
原文传递
导出
摘要 在索赔风险时变、相依条件下,建立随机巨灾的可调态再保险模型.在指明超额赔款再保险为最优分保形式的基础上,讨论并发现目标函数随自留巨灾风险水平的增大,在任意相依结构下均先减后增的变化定理,从而获得了自留向量的一般性显式表达式.根据巨灾风险的特征,还在一类特定的相依结构下,以自留风险的期望效用和方差为优化目标,对自留向量进行了更为明确的表示并给出具体示例.结果表明,随着巨灾风险相依强度的上升,分保的满意度降低,经营稳定性减弱,对保险公司的负面影响很大.此时,为实现客观风险下的分保目标最优,常规风险的自留水平应随之增大,体现了动态再保险的优越性. An adjustable reinsurance model for stochastic catastrophe was established under the conditions that the claim risks are time-varying and dependent.On the basis of showing the optimality of excess-of-loss reinsurance treaty,discussions found that the objective functions under arbitrary dependence structure are decreasing first and then turn out to be increasing as the retention level of catastrophe risk increases,thus the explicit expression of the retention vector was given in a general form.According to the characteristic of catastrophe risks,the retention vector under a particular dependence structure was further presented as well and a concrete example was studied to optimize the expected utility or variance of the retained risks.The result shows that both the satisfaction of reinsurance and the stability of business reduce as the dependence intensity of catastrophe risks increase,the negative effect to the insurer is very obvious.Meanwhile,to optimize the objects of reinsurance with objective risks,the risk retention level in usual case shall also rise up,which reflects the superiority of dynamic reinsurance.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2016年第2期297-307,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(11171221) 国家社会科学基金(15BTQ048) 安徽省高等学校自然科学研究项目(KJ2015A335 KJ2014B18)~~
关键词 巨灾风险 相依索赔 动态再保险 自留向量 catastrophe risks dependent claims dynamic reinsurance retention vector
  • 相关文献

参考文献21

  • 1毕秀春,张曙光.随机意外大灾风险模型的破产概率[J].数学物理学报(A辑),2012,32(2):257-262. 被引量:2
  • 2毕秀春,李荣.一个可变保费巨灾风险模型的局部破产概率[J].数学学报(中文版),2014,57(1):9-16. 被引量:3
  • 3Buerle N. Traditional versus non-traditional reinsurance in a dynamic setting[J]. Scandinavian Actuarial Journal, 2004(5):355-371.
  • 4Wei J Q, Yang H L, Wang R M. Optimal reinsurance and dividend strategies under the Markov-modulated insurance risk model[J]. Stochastic Analysis and Applications, 2010, 28(6):1078-1105.
  • 5Golubin A Y, Gridin V N. Optimizing insurance and reinsurance in the dynamic Cramr-Lundberg model[J]. Automation and Remote Control, 2012, 73(9):1529-1538.
  • 6Bi J N, Meng Q B, Zhang Y J. Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer[J]. Annals of Operations Research, 2014, 212(1):43-59.
  • 7Bai L, Cai J, Zhou M. Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting[J]. Insurance:Mathematics and Economics, 2013, 53(3):664-670.
  • 8Liang Z B, Yuen K C. Optimal dynamic reinsurance with dependent risks:Variance premium principle[J]. Scandinavian Actuarial Journal, 2014(ahead-of-print):1-19.
  • 9Dhaene J, Denuit M, Goovaerts M J, et al. The concept of comonotonicity in actuarial science and finance:Theory[J]. Insurance:Mathematics and Economics, 2002, 31(1):3-33.
  • 10Mena R H, Nieto-Barajas L E. Exchangeable claim sizes in a compound Poisson type process[J]. Applied Stochastic Models in Business and Industry, 2010, 26(6):737-757.

二级参考文献26

共引文献14

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部