摘要
采用特征函数展开法和边界配点法相组合的方法求解二维线性水波问题,计算模型不再局限在矩形物体,而是有限等深域、无限区域内部分淹没的楔形固定障碍物,分析其存在对原波浪速度势在遇障碍物前后区域内的变化影响。边界配点法具有概念简单、易编程、适用于不规则区域和任意几何形状边界的优势,可有效避免复杂的计算和编程,更易广泛应用在各海洋工程问题中。
Boundary Collocation Method (BCM) based on Eigenfunction Expansion Method (EEM) was developed as a new numerical method for two-dimensional linear theory of water waves. The model was not restricted to rectangular objects, but a partly-submerged triangle obstacle in an infinite domain with finite water depth. The effect of the model on velocity potential of original wave in the subregions was analyzed. The BCM possesses several advantages, such as conceptual simplicity, ease programming, being suitable for irregular domains and arbitrary boundary conditions so that can effectively avoid complex calculation and programming. It can be widely used in ocean engineering.
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2016年第2期516-522,共7页
Acta Energiae Solaris Sinica
基金
海洋可再生能源专项资金(GHME2010GC01
GHME2011BL06)
国家自然科学基金青年科学基金(51109201)
关键词
边界配点法
特征函数展开法
波浪传播
障碍物
自由液面
boundary collocation method
eigenfunction expansion method
wave propagation
obstacle
free surface