期刊文献+

比例边界有限元模拟裂纹和夹杂动力相互作用 被引量:2

Simulation of dynamic interactions between a crack and inclusions with scaled boundary finite element method
下载PDF
导出
摘要 基于三角形背景网格,任意结构可用n(n≥3)边多边形比例边界有限元(Polygon Scaled Boundary Finite Elements,PSBFE)自动离散。相对以往基于比例边界有限元(SBFEM)的应用,该多边形单元不但继承SBFEM半解析求解裂纹尖端奇异性的特性,而且在模拟复杂结构的网格生成和裂纹扩展上具有更高的通用性。首次用该单元模拟了动荷载下复合材料裂纹和夹杂相互作用。动荷载稳定裂纹情况下,PSBFE计算结果同现有文献吻合良好,在此基础上,结合基于拓扑的局部网格重剖分方法,模拟了动荷载下夹杂和扩展裂纹相互作用。结果表明,硬质夹杂和软质夹杂对结构的动力应力强度因子分别起到抑制和放大的作用。夹杂尺寸,夹杂大小也会在一定范围内影响动力应力强度因子,尺寸越大距离裂纹越近的夹杂影响越大。 Any structural domain can be discretized automatically with a mesh of arbitrary n-sided( n≥3) polygon scaled boundary finite elements( PSBFE) based on Delaunay triangulation background mesh. Compared with previous literatures based on SBFEM,PSBFE retains the characteristics of SBFEM’s accurately representing orders of singularities at crack tips it is more general and flexible in modeling complicated structures and their crack propagation. Here,PSBFE was for the first time applied to simulate the dynamic interactions between a crack and inclusions in composite material.The numerical results of stationary cracks under dynamic load were consistent with available data in literatures. Next,a local remeshing scheme was employed to simulate the dynamic crack propagation. The numerical results demonstrated that stiff and soft inclusions have the restraining and amplification effects on the dynamic stress intensity factor of a structure;the sizes and positions of inclusions also affect the dynamic stress intensity factor,the larger the size and the closer the inclusion,the more the effects.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第4期15-21,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(40974063,41274106,51109134) 水沙科学与水利水电工程国家重点实验室科研课题(2011-KY-3)
关键词 裂纹扩展 复合材料 多边形单元 网格重剖分 动力应力强度因子 crack propagation composite material polygon elements grid remeshing dynamic stress intensity factor
  • 相关文献

参考文献20

  • 1Jajam K C, Tippur H V. Role of inclusion stiffness and interfacial strength on dynamic matrix crack growth: an experimental study [ J ]. International Journal of Solids and Structures,2012, 49 : 1127 - 1146.
  • 2Lipetzky P, Knesl Z. Crack-particle interaction in a two- phase composite Part II : crack deflection [ J ]. International Journal of Fracture, 1995, 73 ( 1 ) : 81 - 92.
  • 3Lipetzky P, Schmauder S. Crack-particle interaction in two- phase composites Part I: particle shape effects [ J ]. International Journal of Fracture, 1994, 65 (4) : 345 - 358.
  • 4Williams R C, Phan A V, Tippur H V, et al. SGBEM analysis of crack-particle (s) interactions due to elastic constants mismatch [ J ]. Engineering Fracture Mechanics, 2007, 74(3) : 314 -331.
  • 5Lei J, Wang Y S, Huang Y, et al. Dynamic crack propagation in matrix involving inclusions by a time-domain BEM [ J ]. Engineering Analysis with Boundary Elements, 2012, 36(5): 651 -657.
  • 6Lei J, Yang Q, Wang Y S, et al. An investigation of dynamic interaction between multiple cracks and inclusions by TDBEM [ J ]. Composites Science and Technology, 2009, 69(7) : 1279 - 1285.
  • 7Lei J, Zhang C, Yang Q, et al. Dynamic effects of inclusions and microcracks on a main crack [ J ]. International Journal of Fracture,2010, 164(2) : 271 -283.
  • 8Song C, Wolf J P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics [ J ]. Computer Methods in Applied Mechanics and Engineering, 1997, 147 (3/4) : 329 - 355.
  • 9Song C M, Wolf J P. Body loads in scaled boundary finite- element method[J1. Computer Methods in Applied Mechan- ics and Engineering, 1999, 180 (1/2) : 117 - 135.
  • 10Song C W J. The scaled boundary finite-element method for anisotropic muhimaterial plate with crack. [ Z ]. Palaiseau, France : 1998.

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部