期刊文献+

考虑机床-磨削交互的工件表面形貌仿真 被引量:3

Simulation of surface topography considering process-machine interaction in grinding
下载PDF
导出
摘要 磨削加工方法是保证加工表面质量的重要手段,机床结构与磨削过程之间存在的交互作用会对工件表面质量产生不利影响。以砂轮端面磨削加工过程为研究对象,在研究磨削工件表面形貌仿真方法的基础上,深入分析了机床结构与磨削过程之间交互作用对工件表面形貌的影响。首先基于砂轮表层磨粒的随机分布特性建立了虚拟砂轮形貌,然后通过对磨削过程中砂轮磨粒与工件几何干涉作用的分析,建立了磨粒运动轨迹方程和工件表面形貌方程。考虑砂轮变形对磨削过程的反向作用,建立了主轴-砂轮结构与磨削过程间的交互模型,采用耦合仿真的方法对机床-磨削交互过程进行了仿真,并考虑磨削过程中的交互作用提出了一种新的磨削工件表面形貌仿真模型,实验结果验证了所给算法的正确性和有效性,该方法为进一步优化磨削工艺参数提供了依据。 Grinding is an important means to guarantee the quality of the machined surface,however,the interaction between machine and grinding process reduces surface quality. Focusing on face grinding,the influence of process-machine interaction on ground surface was analyzed based on the investigation of surface topography simulation. A visual wheel topology was simulated based on the random nature of grains located on the wheel surface. The grain trajectory equation and workpiece topography equation were established based on the analyses of interference between grains and workpiece. The interaction between grinding process and spindle-wheel was modeled considering the inverse influence of wheel deformation on process and simulated by adopting a coupling simulation method. Taking the processmachine interaction into account,a novel simulation model for surface topography of the grinding process was proposed.Grinding test verifies the accuracy and effectiveness of the given algorithm. The method can be further used to optimize the grinding process parameters.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第4期235-240,共6页 Journal of Vibration and Shock
基金 福建省高校产学合作科技重大项目"高效 高精度可转位刀片周边刃磨关键技术研究"(2014H6025)
关键词 机床-磨削交互 表面形貌 仿真 process-machine interaction surface topography simulation
  • 相关文献

参考文献21

  • 1Brinksmeier E, Mutlugiines Y, Klocke F, et al. Ultra-preci- sion grinding [ J ]. CIRP Annals-Manufacturing Technology, 2010, 59(2) : 652 -671.
  • 2童景琳,赵波,吴雁,刘传绍,高国富,焦锋.二维超声振动磨削陶瓷的表面质量试验研究[J].振动与冲击,2007,26(10):177-179. 被引量:12
  • 3Zhong Z W, Venkatesh V C. Recent developments in grinding of advanced materials [ J ]. International Journal of Advanced Manufacturing Technology ,2009, 41 (5/6) :468 - 480.
  • 4Brinksmeier E, Aurich J C, Govekar E, et al. Advances in modeling and simulation of grinding processes [ J ]. CIRP Annals-Manufacturing Technology, 2006, 55 (2): 667- 696.
  • 5Brecher C, Esser M, Witt S. Interaction of manufacturing process and machine tool [ J ]. CIRP Annals-Manufacturing Technology, 2009, 58(2): 588-607.
  • 6Doman D A, Warkentin A, Bauer R. A survey of recent grinding wheel topography models [ J ]. International Journal of Machine Tools and Manufacture, 2006, 46 (3): 343 - 352.
  • 7Zhou X, Xi F. Modeling and predicting surface roughness of the grinding process [ J ]. International Journal of Machine Tools and Manufacture, 2002, 42( 8 ) : 969 - 977.
  • 8Nguyen T A, Butler D L. Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece[ J ]. International Journal of Machine Tools and Manufacture, 2005, 45( 11 ) : 1329 - 1336.
  • 9Darafon A, Warkentin A, Bauer R. 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding [ J ]. The International Journal of Advanced Manufacturing Technology, 2013, 66 (9/10/11/ 12) : 1715 - 1724.
  • 10巩亚东,刘月明,仇健,韩廷超.点磨削工件微观形貌仿真与试验研究[J].机械工程学报,2012,48(17):165-171. 被引量:7

二级参考文献136

共引文献80

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部