摘要
研究了GCN环的相关性质及应用,并证明了如下结论:1)设R为一个exchange的GCN环,如果R的每个素理想是左本原的,则R为强π-正则环;2)一个环R为强正则环当且仅当R为半素的exchange的GCN环且每个素理想是左本原的;3)完全左幂等的exchange的GCN环是强正则环;4)设R为一个exchange的GCN环,则群环R[G]是von Neumann正则环当且仅当R[G]是完全左幂等环.
This paper is a further study of GCN ring. The main results are as follows: 1) Let R be an exchange GCN ring, if every prime ideal of R is left primitive, then R is a strongly π - regular ring; 2) A ring R is a strongly regular ring if and only if R is a semiprime exchange GCN ring and every prime ideal of R is left primitive; 3) Full left idempotent exchange GCN ring is a strongly regular ring; 4) Let R be an exchange GCN ring, group ring R[G] is avon Neumann regular ring if and only if R[G] is a full left idempotent ring.
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2015年第4期13-15,共3页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11471282)
江苏省高等职业院校国内高级访问学者计划资助项目(2014FX079)