期刊文献+

Abel环的一些刻画(Ⅲ) 被引量:3

Some characterizations on Abel rings(Ⅲ)
原文传递
导出
摘要 设R为环,证明了如下结论:1)R为Abel环当且仅当对任意x,y∈R,当1-xy∈GPE(R)时必有1-yx∈GPE(R);2)若R为正则环,则PE(R)为正则环;3)R为约化环当且仅当对每个e∈E(R),a∈N(R),存在x∈R,使得ae=eaxae;4)R为强正则环当且仅当对任意a,b∈R,存在x∈R,使得ab=baxab. In this paper, the following results are proved: 1) A ring R is an Abel ring if and only if for each x, y∈R, 1-xy∈GPE(R) implies that 1-yx∈GPE(R); 2) If R is a regular ring, then PE(R) is a regular ring; 3) R is a reduced ring if and only if for each e∈E(R) and a∈N(R), thereexists an element x of R such that ae=eaxae; 4) R is a strongly regular ring if and only if for each a,b∈R, there exists x∈R such that ab=baxab.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2015年第4期16-18,23,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11471282) 2014年扬州大学大学生科技创新资助项目
关键词 ABEL环 幂等元 幂零元 约化环 正则环 Abel ring idempotent element nilpotent element reduced ring regular ring
  • 相关文献

参考文献11

  • 1RAKOC EVI V. On the norm of idempotent in a Hilbert space [J]. Amer Math Monthly, 2000, 107(8) : 748-750.
  • 2KOLIHA J J, RAKO ( EVI V. Invertibility of the difference of idempotents [J]. Linear Multilinear Algebra, 2003, 51(1): 97 -110.
  • 3HAN J, LEE Y, PARK S W. Semicentral idempotents in a ring [J]. J Korean Math Soc, 2014, 51(3): 463- 472.
  • 4屈寅春,范志勇,魏俊潮.环的子集的交换化子的性质[J].扬州大学学报(自然科学版),2013,16(1):1-3. 被引量:1
  • 5屈寅春,周颖,魏俊潮.Abel环的一些刻画[J].扬州大学学报(自然科学版),2012,15(4):5-7. 被引量:5
  • 6周颖,李敏,魏俊潮.Abel环的一些刻画(Ⅱ)[J].扬州大学学报(自然科学版),2015,18(1):1-3. 被引量:6
  • 7WEI Junchao, LI Libin. Quasi-normal rings [J]. Comm Algebra, 2010, 38(5). 1855-1868.
  • 8WANG Shuqin. On op-idempotents [J]. Kyungpook Math J, 2005, 5(2) : 171-175.
  • 9CHEN Huanyin. A note on potent elements [J]. Kyungpook Math J, 2005, 45(4): 519-526.
  • 10ZHOU Ying, WEI Junchao. Generalized weakly central reduced rings [J]. Turkish J Math, 2015, 39(5): 604-617.

二级参考文献22

  • 1Jun Chao WEI.The Rings Characterized by Minimal Left Ideals[J].Acta Mathematica Sinica,English Series,2005,21(3):473-482. 被引量:7
  • 2NICHOLSON W K, ZHOU Yiqiang. Rings in which elements are uniquely the sum of an idempotent and aunit [J]. Glasgow Math J, 2004, 46(2): 227-236.
  • 3KIM J Y, BAlK J U. On idempotent reflexive rings [J]. Kyungpook Math J, 2006, 46(4): 597-601.
  • 4KIM J Y. Certain rings whose simple singular modules are GP-injective [J]. Proc Japan Acad: Set A Math Sci, 2005, 8(7).- 125-128.
  • 5WANG Shupin. On op-idempotents [J]. Kyungpook Math J, 2005, 45(2): 171-175.
  • 6CHEN Huanyin. A note on potent elements [J]. Kyungpook Math J, 2005, 45(4): 519-526.
  • 7WEI Junchao, LI Libin. Quasi-normal rings [J]. Commun Algebra, 2010, 38(5): 1855-1868.
  • 8NICHOLSON W K. Lifting idempotents and exchange rings [J]. Trans Amer Math Soc, 1977, 229(3): 269- 278.
  • 9BELL H E. Dou rings: some applications to commutativity theorems [J]. Canad Math Bull, 1968, 11(3) : 375- 380.
  • 10GOODEARL K R. Von Neumann regular rings [M]. Boston: Pitman, 1979: 231-284.

共引文献8

同被引文献14

  • 1魏俊潮.直接有限环[J].扬州大学学报(自然科学版),2005,8(2):1-3. 被引量:8
  • 2CHEN Weixing. On semiabelian ~r-regular rings [J]. Int J Math Sei, 2007, 2007: 1-10.
  • 3Wei Junchao, Li Libin. Quasi-normal rings ~J3. Comm Algebra, 2010, 38(5) : 1855-1868.
  • 4WEI Junchao. Weakly Abel rings and weakly exchange rings [J]. Acta Math Hungar, 2012, 137(4): 254 262.
  • 5Wei Junchao. Certain rings whose simple singular modules are nil-injective E J3. Turkish J Math, 2008, 32(4) : 393-4O8.
  • 6WEI Junchao, LI Libin. MC2 rings and WQD rings [J]. Glasg Math J, 2009, 51(3) : 691-702.
  • 7WEI Junchao. MC2 rings [J]. Kyungpook Math J, 2008, 48(4) : 651-663.
  • 8WEI Junchao. Almost Abelian rings [J]. Comm Math, 2013, 21(1): 15-30.
  • 9屈寅春,周颖,魏俊潮.Abel环的一些刻画[J].扬州大学学报(自然科学版),2012,15(4):5-7. 被引量:5
  • 10周颖,李敏,魏俊潮.Abel环的一些刻画(Ⅱ)[J].扬州大学学报(自然科学版),2015,18(1):1-3. 被引量:6

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部