摘要
设R为环,证明了如下结论:1)R为Abel环当且仅当对任意x,y∈R,当1-xy∈GPE(R)时必有1-yx∈GPE(R);2)若R为正则环,则PE(R)为正则环;3)R为约化环当且仅当对每个e∈E(R),a∈N(R),存在x∈R,使得ae=eaxae;4)R为强正则环当且仅当对任意a,b∈R,存在x∈R,使得ab=baxab.
In this paper, the following results are proved: 1) A ring R is an Abel ring if and only if for each x, y∈R, 1-xy∈GPE(R) implies that 1-yx∈GPE(R); 2) If R is a regular ring, then PE(R) is a regular ring; 3) R is a reduced ring if and only if for each e∈E(R) and a∈N(R), thereexists an element x of R such that ae=eaxae; 4) R is a strongly regular ring if and only if for each a,b∈R, there exists x∈R such that ab=baxab.
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2015年第4期16-18,23,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11471282)
2014年扬州大学大学生科技创新资助项目
关键词
ABEL环
幂等元
幂零元
约化环
正则环
Abel ring
idempotent element
nilpotent element
reduced ring
regular ring