期刊文献+

基于改进的codebook算法的运动目标检测 被引量:1

Detection of moving targets based on the improved codebook algorithm
原文传递
导出
摘要 针对传统的codebook算法在面临复杂的环境背景干扰下进行运动目标检测中存在算法冗余的问题,提出一种改进的codebook运动目标检测算法.通过改进的码本描绘背景中感兴趣的码元进行建模,同时选择YUV空间模型替换传统的RGB模型,并在目标检测阶段融入训练元素来解决背景像素变化的问题,以提高运动目标检测的计算效率和可靠性.仿真结果表明,该方法比传统的目标检测算法具有更高的实时性、鲁棒性和准确性. In the detection of moving targets, using codebook algorithm can effectively solve the interference problem of complex environmental background. Improved codebook algorithm is proposed to solve the algorithm redundancy problem of traditional codebook algorithm and improve algorithm performance. By improving codebook, it achieves the object of interest in the context of modeling symbols. In order to improve the efficiency and reliability of moving object detection, this paper uses the improved codebook algorithm to describe the interesting elements in the background for modeling, and chooses YUV space model to replace the traditional RGB model at the same time. Meanwhile the training element is integrated into the target detection phase to solve the problem of background pixels changes. The experiment results prove that this method has higher real-time performance, robustness and accuracy than the traditional methods of target detection.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2015年第4期63-67,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(51273172)
关键词 运动目标检测 时间序列 codebook算法 YUV空间 训练元素 detection of moving targets time series codebook algorithm YUV space training elements
  • 相关文献

参考文献4

二级参考文献33

  • 1王东升,李在铭.一种视频对象分割技术的研究与实现[J].电子测量与仪器学报,2005,19(4):43-46. 被引量:3
  • 2刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4OBERTI F, CALCAGNO S, ZARA M, et al. Robust tracking of humans and vehicles in cluttered scenes with occlusions [ C ]. 2002 International Conference on Image Processing, 2002 : 629 - 632.
  • 5PARAGIOSN D R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence,2000, 22 ( 3 ) :266-280.
  • 6STAUFFER C, GRIMSON W. Adaptive background mixture models for real time tracking [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999 : 246-252.
  • 7KEVIN N,SETH H. Estimating uncertainty in SSD-based feature tracking [ J ]. Image and Vision Computing, 2002, 20(1) : 47-58.
  • 8ZHU ZH G. A real-time vision system for automatic traffic monitoring[ J ]. Image and Vision Computing, 2000,18 (10) :781-794.
  • 9WANG Y, WANG T E, SHEN D G. Lane detection and tracking using B-Snake [ J ]. Image and Vision Compu- ting, 2004,22 ( 4 ) : 269 -280.
  • 10Cutler R,Davis L.View-based detection[C]//Proc of Int Conf on Pattern Recognition.Piscataway,NJ:IEEE,1998:495-500.

共引文献108

同被引文献15

  • 1孙轶红,焦永和.基于特征描述及纹理的桥梁三维建模方法研究[J].计算机仿真,2006,23(2):171-173. 被引量:7
  • 2Liu W. , Yu H. F. , Yuan H. , et al.. Effective background modelling and subtraction approach for moving object detection [J]. IET Computer Vision,2015,9( 1 ) :13 -24.
  • 3Zhang X. , Huang T. , Tian Y. , et al.. Background-modeling- based adaptive prediction for surveillance video coding[ J]. IEEE Trans Image Process,2014,23 (2) :769 - 784.
  • 4Stauffer C. , Grimson W.E.. Learning patterns of activity using real-time tracking [ J ]. IEEE Trans Pattern Anal Mach Intell, 2000,22(8) :747 -757.
  • 5Hdmann M. , Tidenbaeher P. , Rigoll G... Background segnmntmion with feedback: the pixel-based adaptive segmenter [ C ]. IEEE Computer Society Conference on computer Vision and Pattern Recognition Workshop (CVPRW), 2012:38-43.
  • 6Kang B. , Zhu W. P. . Robust moving object detection using compressed sensing [ J ]. IET Image Processing, 2015,9 ( 9 ) : 811 -819.
  • 7Chavez-Garcia R. O. , Ayeard O.. Multiple sensor fusion and classification for moving object detection and tracking [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2016,17 ( 2 ) : 525 - 534.
  • 8Zhang X., Yang Y. H., Han Z. G., et al.. Objeet olass detection: a survey[J]. ACM Computing Surveys,2013,46( 1 ) : 28 - 36.
  • 9Heikklii M. , Pietikainen M.. A texture-based method for modeling the background and detecting moving objects E J ]. IEEE Transaction on Pattern Analysis and machine Inteligeree,2006,28 (4) :657 -662.
  • 10Heikkila M. , Pietikainen M. , Sohmid C.. Description of interest regions with local binary patterns [ J ]. Pattern Reeognit, 2009,42 ( 3 ) :425 -436.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部