期刊文献+

气液两相流作用下输水管道的振动特性 被引量:4

The vibration characteristics of water transmission pipe based on the effects of gas-liquid two-phase flow
原文传递
导出
摘要 为提高输水管道运行的安全性,并为输水管道的改造设计提出合理建议,进行了输水管道在气液两相流作用下管道振动装置的试验.实验结果表明,输水管道中含气率越大,管道不同位置的振动强度差别越大.对下降管道振动的频谱特征分析,发现不同流型下振动频谱图呈现不同特征.统计结果显示,在输水工况范围内,输水管道中气液两相流压力波动的频率约为17Hz.以两端简支输流管道为模型,运用自由振动理论分析了流固耦合作用、管道结构参数以及含气率对管道系统固有频率的影响,通过加强约束和选用质轻抗拉伸管材的方法,可避免输水管道系统发生共振.总之,气体的存在对输水管道安全运行弊大于利,因此在实际工程中管道内的气体应及时排出. In order to improve the safety of water transmission pipe line and put forward reasonable proposals for the design and transformation of the pipeline, a field test is carried out to study the pipe vibration under gas-liquid two-phase flow. The results showed that the water transmission pipe with larger void fraction can generate more intense vibration at different positions. Through the a nalysis of the vibration spectrum in the downward pipe, it is found that the vibration spectra under different flow regimes show different characteristics. It is concluded that the frequency of pressure fluctuation of gas-liquid two phase flow in water transmission pipe is around 17Hz according to all the operating points in the test. In addition, the model of "simply supported pipe at both ends" is applied to analyze the effect of fluid-structure interaction, structural parameters and flow parameters on the natural frequency of the pipe system. Strong constraints and light-tensile pipe materials are proposed to avoid the resonance. Taking various factors into consideration, the presence of air in the pipeline does more harm than good, so the air should be promptly discharged in the actual engineering.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2015年第4期73-78,共6页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(51178141) 国家水体污染控制与治理科技重大专项基金资助项目(2012ZX07408-002-004-002)
关键词 输水管道 气液两相流 管道振动 流固耦合 固有频率 water transmission pipe gas-liquid two-phase flow pipe vibration fluid-structure interaction natural frequency
  • 相关文献

参考文献9

  • 1MIWA S, MORIM, HIBIKI T. Two-phase flow induced vibration in piping systems [J]. Prog Nucl Energ, 2015, 78 270-284.
  • 2POZOS O, GONZALEZ C A, GIESECKE J, et al. Air entrapped in gravity pipeline systems [J]. J Hydraul Res, 2010, 48(3): 338-347.
  • 3YANG Tianzhi, YANG Xiaodong, LI Yuhang, et al. Passive and adaptive vibration suppression of pipes conve- ying fluid with variable velocity [J]. J Vib Control, 2014, 20(9) : 1293-1300.
  • 4REZAEI D, TAHERI F. Health monitoring of pipeline girth weld using empirical mode decomposition [J]. Smart Mater Struct, 2010, 19(5): 241-247.
  • 5RAZI P, ESMAEEL R A, TAHERI F. Improvement of a vibration-based damage detection approach for health monitoring of bolted flange joints in pipelines [J]. Struct Health Monit, 2013, 12(3) : 207 -224.
  • 6PENG Xuelin, HAO !-tong, LI Zhongxian. Application of wavelet packet transform in subsea pipeline bedding condition assessment [J]. Eng Struct, 2012, 39.. 50-65.
  • 7BRENNAN M J, LIMA F K, ALMEIDA F C L, et al. A virtual pipe rig for testing acoustic leak detection corr- elators., proof of concept [J]. Appl Acoust, 2016, 102.. 137-145.
  • 8黄海田,仇宝云,莫岳平.南水北调东线工程江苏段管理改革设计[J].扬州大学学报(自然科学版),2003,6(2):60-64. 被引量:7
  • 9中国市政工程东北设计研究院,长安大学.城镇供水长距离输水管(渠)道工程技术规程:CECS193:2005[s].北京:中国计划出版社,2006:4.

二级参考文献3

共引文献6

同被引文献57

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部