期刊文献+

旋转滑动弧氩等离子体裂解甲烷制氢 被引量:15

Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon
下载PDF
导出
摘要 采用切向气流和磁场协同驱动的旋转滑动弧氩等离子体,先通过光谱分析法计算了其电子温度和电子密度,了解其物理特性,将其应用于甲烷裂解制氢,研究了进气流量和CH_4/Ar比对反应效果的影响。结果表明,该滑动弧系统电子温度为1.0-2.0 e V,电子密度高达1015cm^(-3),是介于热与低温等离子体之间的一种等离子体形式,具有独特的物理特性,可以在达到较高反应效率的同时,保持较大的处理量;在CH_4裂解制氢实验中,CH_4转化率可达22.1%-70.2%,并随进气流量和CH_4/Ar比的增大均逐渐降低;H_2选择性为21.2%-61.2%,并随进气流量的增大先基本不变后有所增大,随CH_4/Ar比的增大逐渐降低;与应用于甲烷裂解的不同形式的低温等离子体对比(如微波、射频、介质阻挡放电等)可以发现,旋转滑动弧在获得较高甲烷转化率、较高H_2选择性和较低制氢能耗的同时,还可以保持较大的处理量,即进气流量可达6-20 L/min。 A kind of rotating gliding arc( RGA) argon plasma co-driven by tangential flowand magnetic field was investigated and used for hydrogen production from methane decomposition. In order to obtain insights into the physical characteristics of the RGA plasma,optical emission spectroscopy( OES) analysis was used to determine the electron temperature and electron density. In addition,the effects of feed flowrate and CH4/ Ar ratio on the performance of the methane decomposition process in this RGA plasma were also investigated.Results have shown that,the RGA plasma is a kind of unique plasma between thermal and non-thermal plasma,with electron temperature of 1. 0-2. 0 e V and electron density of 1015cm-3. In this system,the CH4 conversion could be 22. 1%-70. 2% and it increased with the increase of flowrate or CH4/ Ar ratio. The H2 selectivity varied from 21. 2% to 61. 2%,and with the augment of flowrate,the H2 selectivity first varied slightly and then increased. A comparison of different non-thermal plasmas( e. g.,microwave,radio frequency,and dielectric barrier discharge) showed that the RGA plasma could provide a relatively high CH4 conversion and H2 selectivity,as well as a relatively lowenergy consumption for H2 production,while maintaining a high flowrate( i. e.,processing capacity) of 6-20 L /min.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2016年第2期192-200,共9页 Journal of Fuel Chemistry and Technology
基金 国家自然科学基金(51576174) 高等学校博士学科点专项科研基金(20120101110099) 中央高校基本科研业务费专项资金(2015FZA4011)项目资助~~
关键词 旋转滑动弧 等离子体 光谱分析 甲烷裂解 氢气 rotating gliding arc(RGA) plasma optical emission spectroscopy(OES) methane decomposition hydrogen
  • 相关文献

参考文献2

二级参考文献12

  • 1陈彤,李晓东,严建华,黄蕾,陆胜勇,谷月玲,岑可法.五氯酚在飞灰表面低温反应生成二噁英特性[J].化工学报,2004,55(10):1696-1701. 被引量:4
  • 2Gangoli S P, Gutsol A F, Fridman A A. A Non- Equilibrium Plasma Source: Magnetically Stabilized Glid- ing Arc Discharge: I . Design and Diagnostics [J]. Plasma Sources Sci Technol, 2010, 19(6): 1-7.
  • 3FridmanA, Nester S, Kennedy L A, et al. Gliding Arc Gas Discharge [J]. Progress in Energy Comb Sci, 1999, 25(2): 211-231.
  • 4Yan J H, Liu Y N, Bo Z, et al. Degradation of Gas-Liquid Gliding Arc Discharge on Acid Orange II [J]. Journal of Hazardous Materials, 2008, 157(2): 441-447.
  • 5XU G F, DING X W. Syngas Production from Methane Using AC Gliding Arc Reactor [C]// Power Energy Eng Conf. Wuhan: China, 2011:1-4.
  • 6KalraC S, GustolA F, PridmanAA. Gliding Arc Dis- charges as a Source of the Intermediate Plasma for Methane Partial Oxidation [J]. IEEE Trans Plasma Sci- ence, 2005, 33:32-41.
  • 7Rusu I, Cormier J M. On a Possible Mechanism of the Methane Steam Reforming in a Gliding Arc Reactor [J]. Chem En J, 2003, 91:23- 31.
  • 8Streethawong T, Thakonpatthanakun P, Chavadej S. Par- tial Oxidation of Methane with Air for Synthesis Gas Pro- duction in a Multistage Gliding Arc Discharge System [J]. Int J Hydrogen Energy, 2007, 32:1067-1079.
  • 9ZHANG J Q, YANG Y J, ZHANG J S, et al. Non- Oxidative Coupling of Methane to C2 Hydrocarbons Un- der Above-Atmospheric Pressure Using Pulsed Microwave Plasma [J]. Energy Fuels, 2002, 16:687-693.
  • 10Rueangjitt N, Streethawong T, Chavadej S, et al. Non- Oxidative Reforming of Methane in a Mini-Gliding Arc Discharge Reactor: Effects of Feed Methane Concentra- tion, Feed Flow Rate, Electrode Gap Distance, Residence Time, and Catalyst Distance [J]. Plasma Chem Plasma Process, 2011, 31:517-534.

共引文献13

同被引文献117

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部