期刊文献+

Volterra-Stieltjes型泛函积分方程解的存在性及渐近行为

On Existence and Asymptotic Behavior of Solutions for Functional Integral Equation of Volterra-Stieltjes Type
下载PDF
导出
摘要 利用非紧性测度理论和Schauder不动点定理,该文研究了无界区间上Volterra-Stieltjes型泛函积分方程解的存在性和渐近行为.作为应用,并给出了一些例子来验证主要结论. The aim of this paper is to present existence and asymptotic behavior of solutions for the quadratic functional integral equation of Volterra-Stieltjes type on unbounded interval. The concept of measure of noncompactness and the Schauder fixed point principle are the main tools in carrying out our proof. Furthermore, some examples are given to show the efficiency and usefulness of the main findings.
作者 夏治南
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第1期130-143,共14页 Acta Mathematica Scientia
基金 国家自然科学基金(11501507 11426201) 浙江省自然科学青年基金(LQ13A010015)资助~~
关键词 泛函积分方程 Volterra-Stieltjes型 非紧性测度 SCHAUDER不动点定理 渐近行为 Functional integral equation Volterra-Stieltjes Measure of noncompactness Schauder fixed point principle Asymptotic behavior.
  • 相关文献

参考文献27

  • 1Burton T A. Volterra Integral and Differential Equations. New York: Academic Press, 1983.
  • 2Corduneanu C. Integral Equations and Applications. Cambridge: Cambridge University Press, 1991.
  • 3Banas J, Caballero Mena J. Some properties of nonlinear Volterra-Stieltjes integral operator. Comput Math Appl, 2005, 49: 1565~1573.
  • 4Banas J, Dhage B C. Global asymptotic stability of solutions of a functional integral equation. Nonlinear Anal, 2008, 69: 1945-1952.
  • 5Banas J, Zajac T. A new approach to the theory of functional integral equations of fractional order. J Math Anal Appl, 2011, 375: 375-387.
  • 6Liang J, Yan S, Agarwal R P, Huang T. Integral solution of a class of nonlinear integral equations. Appl Math Comput, 2013, 219: 4950-4957.
  • 7Abbas S, Benchohra M, Nieto J J. Global attractivity of solutions for nonlinear fractional order Riemann?Liouville Volterra-Stieltjes partial integral equations. Electron J Qual Theory Differ Equ, 2012, 81: 1-15.
  • 8Banas J. Some properties of Urysohn-Stieltjes integral operators. Inter J Math Math Sci, 1998, 21: 79-88.
  • 9Banas J, O'Regan D. Voltorra-Sticltjes integral operators. Math Comput Modelling, 2005, 41: 335-344.
  • 10Dunford N, Schwartz J. Linear Operator I. Leyden: Int Publ, 1963.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部