摘要
在半序概率度量空间中建立了映射对G:X×X×X→X与g:X→X的相容性概念.在不需要可交换的条件下,研究了相容映射在满足更一般的非线性压缩条件下的三元重合点与三元不动点问题,所得结果推广了已有文献中的二元重合点与二元公共不动点定理.最后,给出主要结果的一个具体应用.
In this paper, we establish the notion of compatibility for a pair of mappings G:X×X×X→X and g : X →X in partially ordered probabilistic metric spaces. Under not necessary commutative conditions, some tripled coincidence and tripled common fixed point problems of compatible mappings satisfying a more general nonlinear contractive condition are studied. The obtained results generalize some coupled common fixed point theorems in the corresponding literatures. Finally, an example is given to illustrate our main results.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2016年第1期157-167,共11页
Acta Mathematica Scientia
基金
国家自然科学基金(11361042
11071108)
江西省自然科学基金(20132BAB201001
2010GZS0147)资助~~
关键词
概率度量空间
三元重合点
三元不动点
半序集
混合g-单调映射
Probabilistic metric space
Tripled coincidence point
Tripled fixed point
Partially ordered set
Mixed g-monotone mapping.