期刊文献+

带注资的对偶模型中征税问题

Taxation Problems in the Dual Model with Capital Injections
下载PDF
导出
摘要 该文在带注资的对偶模型中研究征税问题.假设税按照loss-carry-forward制度支付.当盈余低于0时,将采取注资的方式使得盈余达到0而不致破产.假设收益服从指数分布,得到了期望折现征税总额减去期望折现注资成本总额的显式表达式. This paper studies the taxation problems in the dual model with capital injections. Assume that the taxes are paid according to a loss-carry-forward system. Let the surplus attain 0 avoiding ruin by capital injections when the surplus becomes negative. The explicit expression for the expected discounted tax payments minus the expected discounted costs of capital injections is obtained under the assumption that the gains are exponentially distributed.
作者 刘晓 陈振龙
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第1期187-192,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(11371321 11201006 11271020) 安徽省哲学社会科学规划项目(AHSK11-12D128) 安徽省教育厅自然科学研究重大项目(KJ2012ZD01) 浙江省高校人文社科重点研究基地(统计学) 安徽师范大学科研培育基金(2015xmpy14)资助~~
关键词 征税 对偶模型 注资 Taxation Dual model Capital injection.
  • 相关文献

参考文献29

  • 1Avanzi B, Gerber H U, Shiu E S W. Optimal dividends in the dual model. Insurance: Mathematics and Economics, 2007, 41: 111-123.
  • 2Liu X, Chen Z L. Dividend problems in the dual model with diffusion and exponentially distributed observation time. Statistics and Probability Letters, 2014, 87: 175-183.
  • 3Peng D, Liu D H, Liu Z M. Dividend problems in the dual risk model with exponentially distributed observation time. Statistics and Probability Letters, 2013, 83: 841-849.
  • 4Albrecher H, Hipp C. Lundberg's risk process with tax. Blatter DGVFM, 2007, 28: 13-28.
  • 5Albrecher H, Badescuc A, Landriaultd D. On the dual risk model with tax payments. Insurance: Mathe?matics and Economics, 2008, 42: 1086-1094.
  • 6Ming R X, Wang W Y, Xiao L Q. On the time value of absolute ruin with tax. Insurance: Mathematics and Economics, 2010, 46: 67-84.
  • 7Wang W Y, Hu Y J. Optimalloss-carry-forward taxation for the Levy risk model. Insurance: Mathematics and Economics, 2012, 50: 121-130.
  • 8Wei J Q, Yang H L, Wang R M. On the Markov-modulated insurance risk model with tax. Blatter der DGVFM, 2010, 31: 65-78.
  • 9Albrecher H, Borst S, Boxma 0, Resing J. The tax identity in risk theory-a simple proof and an extension. Insurance: Mathematics and Economics, 2009, 44: 304-306.
  • 10Albrecher H, Renaud J F, Zhou X W. A Levy insurance risk process with tax. Journal of Applied Probability, 2008, 45: 363-375.

二级参考文献49

  • 1Cramer H., Collective Risk Theory: a Survey of the Theory from the Point of View of the Theory of Stochastic Process, Stockholm: Ab Nordiska Bokhandeln, 1955.
  • 2Seal H. L., Stochastic Theory of a Risk Business, New York: Wiley, 1969.
  • 3Segerdahl C. O., fiber einige risikotheoretische Fragestellungen, Skandinavisk Aktuarietidskrift, 1942, 25: 43-83.
  • 4Sundt B., Teugels J. L., Ruin estimates under interest force, Insurance: Mathematics and Economics, 1995 16: 7-22.
  • 5De Finetti B., Su un'impostazione alternativa dell teoria colletiva del rischio, Transactions of the XV Inter national Congress of Actuaries, 1957, 2: 433-443.
  • 6Gerber H. U., Shiu E. S. W., On the time value of ruin, North American Actuarial Journal, 1998, 2(1) 48 72.
  • 7Yuen K. C., Wang G., Li W. K., the Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier, Insurance: Mathematics and Economics, 2007, 40:104 112.
  • 8Avanzi B., Gerber H. U., Optimal dividends in the dual model with diffusion, Astin Bulletin, 2008, 38(2): 653-667.
  • 9Albrecher H., Badescu A. L., Landriault D., On the dual risk model with tax payments, Insurance: Mathe- matics and Economics, 2008, 42:1086 1094.
  • 10Ng A. C. Y., On a dual model with a dividend threshold, Insurance: Mathematics and Economics, 2009, 44: 315 -324.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部