期刊文献+

基于驾驶人决策机制的换道意图识别模型 被引量:12

A Recognition Model of Lane Change Intention Based on Driver's Decision Mechanism
下载PDF
导出
摘要 依据驾驶人换道决策的产生机制,提出速度期望满足度、危险感知系数和换道可行性系数作为换道决策的识别指标并确定其量化方法.通过实车试验数据的分析表明:量化指标与换道决策存在不同程度的相关性;同时在换道初期、车道保持及过渡状态阶段存在显著差异.以速度期望满足度、危险感知系数和换道可行性系数为特征输入参数,建立基于模糊神经网络的驾驶人换道意图识别模型,进行驾驶人换道意图的识别.结果表明,该模型在换道初期的预测准确率达到89.93%,虚警率为9.52%,优于以碰撞时间TTC为输入指标的BP神经网络模型,以及以RV、RP、RS为变量的Logistic模型,说明模型具有较好的预测准确性. According to the producing mechanism of driver's lane change decision, desired speed satisfaction, risk perception coefficient and change feasibility coefficient are put forward and quantified as the identification parameters of lane change decision. The results of analyzing real vehicle test data indicate that quantitative indicators have different correlation with lane change decision, and there is a significant difference among the beginning of lane changing, lane keeping and transition state stage. Fuzzy neural network model is established to identify driver's lane change intention by using desired speed satisfaction, risk perception coefficient and feasibility coefficient of lane change as the input feature index. The research results show that the model accuracy in the early stage of lane change is 89.93%, and the false alarm rate is 9.52%, which both are better than BP neural network model by taking the collision time TTC as input vectors and the Logistic model by using RV, RP and RS as variables. It shows that the model has a good predictive accuracy.
作者 倪捷 刘志强
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第1期58-63,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(51108209) 教育部博士点基金(20113227110014) 江苏省普通高校研究生科研创新计划项目(CXLX12_0657)~~
关键词 智能交通 换道意图 决策机制 换道辅助系统 模糊神经网络 intelligent transportation lane change intention decision mechanism lane assistant change fuzzy neural network
  • 相关文献

参考文献6

  • 1Oliver N, Pentland A P. Graphical models for driver behavior recognition in a SmartCar[C]// 2000 Proceedings of the IEEE Intelligent Vehicles Symposium. 2000: 7-12.
  • 2Kuge, Yamamura T, Shimoyama O, et al. A driver behavior recognition method based on a driver model framework[J]. SAE, 2000-01-0349:1-8.
  • 3Takuya Mizushima, Pongsathorn Raksincharoensak,Masao Nagai. Direct yaw-moment control adapted to driver behavior recognition[C]. SICE-ICASE International Joint Conference, 2006:534-539.
  • 4马勇,付锐,郭应时,袁伟,吴海波.基于实车试验的驾驶人换道行为多参数预测[J].长安大学学报(自然科学版),2014,34(5):101-108. 被引量:17
  • 5Van Leeuwen C J. Driver modeling and lane change maneuver prediction[D]. Groningen: University of Groning, 2010.
  • 6Kondoh T, Yamamura T, Kitazaki S, et al. Identification of visual cues and quantification of drivers' perception of proximity risk to the lead vehicle in car- following situations[J]. Journal of Mechanical Systems for Transportation and Logistics, 2008, 1(2): 170-180.

二级参考文献11

  • 1宗长富,杨肖,王畅,张广才.汽车转向时驾驶员驾驶意图辨识与行为预测[J].吉林大学学报(工学版),2009,39(S1):27-32. 被引量:26
  • 2Wang J S,Knipling R R. Lane change/merge:problem size assessment and statistical description[R]. Wash- ington DC: National Highway Traffic Safety Adminis-tration, 1993.
  • 3National Transportation Safety Board. Special investi- gation report vehicle and infrastructure-based tech- nology for the prevention of rear-end collisions[R]. Washington DC: National Transportation Safety Board, 2001.
  • 4Kuge N, Yamamura T, Shimoyama O, et al. A driver behavior recognition method based on a driver model framework[J]. SAE Paper 2000-01-0349.
  • 5Liu A, Pentland A P. Towards real-time recognition of driver intentions[C]//IEEE. Proceedings of IEEE Conference on Intelligent Transportation Systems 1997. Boston:IEEE,1997:236-241.
  • 6Oliver N, Pentland A P. Graphical models for driver behavior recognition in a SmartCar[C]//IEEE. Intel- ligent Vehicles Symposium 2000. New York: IEEE, 2000:7-12.
  • 7McCall J C, Wipf D P, Trivedi M M, et al. Lane change intent analysis using robust operators and sparse Bayesian learning[J]. IEEE Transactions on Intelligent Transpor- tation Systems,2007,8(3) :431-440.
  • 8Toledo-Moreo R. IMM-based lane-change prediction in highways with low-cost GPS/INS[J]. IEEE Trans- actions on Intelligent Transportation Systems, 2009, 10(1) : 180-185.
  • 9Van Leeuwen C J. Driver modeling and lane change maneuver prediction [D]. Groningen: University of Groningen, 2010.
  • 10李亚秋,吴超仲,马晓凤,黄珍,张晖.基于EKF学习方法的BP神经网络汽车换道意图识别模型研究[J].武汉理工大学学报(交通科学与工程版),2013,37(4):843-847. 被引量:19

共引文献16

同被引文献71

引证文献12

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部