期刊文献+

基于随机重复爬山法的交通状态预测 被引量:1

Traffic Status Prediction Based on Random Restart Hill-climbing
下载PDF
导出
摘要 合理构造影响交通状态网络结构,是实现交通状态预测的前提条件.为克服爬山法易陷入局部最优的缺陷,提出一种基于随机重复爬山法的交通状态预测方法.对随机生成的有向无环图迭代运行爬山法得到多网络结构;通过有向边置信度的定义和置信度阈值的计算,确定了最优贝叶斯网络结构中节点和有向边选取准则;利用最优贝叶斯网络结构,实现了畅通、平稳、拥挤和阻塞等4种交通状态的预测并综合评价.分析结果表明,该方法仅选取时段、节假日等两变量时,对交通状态预测总体准确率超过85%,能够为高速公路运行状态监测预警和决策分析提供有效方法和数据支撑. Construct of reasonable network structure which influencing traffic status is the prerequisite of realizing traffic status prediction. In order to improve Hill-climbing algorithm, which may trap into the local optimum instead of the global optimum, a new traffic status prediction method is proposed based on Random Restart Hill-climbing. Proposed multi-network structures are obtained by executing Hill-climbing algorithm iteratively, to create directed acyclic graphs randomly. Furthermore, selection criterion for nodes and directed edges in the optimal Bayesian network structure is determined by the definition of directed edges-confidence and the calculation of confidence-threshold. The intelligent predictions and comprehensive evaluations of four kinds of traffic status including free, smooth, congestion and jam are achieved by using optimal Bayesian network structure. Results indicate that the prediction results are satisfactory with a high accuracyrate of more than 85% only selecting two variables such as hour and holiday. Therefore, the proposed method provides an effective way and experimental proof for monitoring, warning and decision analysis of expressway operation status.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第1期162-168,175,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金项目(51308057) 陕西省自然科学基金项目(2013JQ8006) 中央高校基本科研业务费专项资金项目(310832161006 2014G1321035)~~
关键词 智能交通 交通状态预测 随机重复爬山法 贝叶斯网络 数据挖掘 intelligent transportation traffic status prediction Random Restart Hill-climbing Bayesian network data mining
  • 相关文献

参考文献10

  • 1鲜于建川,隽志才,朱泰英.基于贝叶斯网络的出行选择行为分析[J].交通运输系统工程与信息,2011,11(5):167-172. 被引量:10
  • 2Huang H L, Abdel A M, Darwiche A L. County-level crash risk analysis in florida: Bayesian spatial modeling[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2148): 27- 37.
  • 3Hinsbergen, Lint, Zuylen. Bayesian committee of neural networks to predict travel times with confidence intervals[J]. Transportation Research Part C: Emerging Technologies,2009,17(5): 498-509.
  • 4Chickering, Heckerman, Meek. Large-sample learning of Bayesian networks is NP-hard[J]. Journal of Machine Learning Research,2004,5(8): 1287-1330.
  • 5Perrier, Imoto, Miyano. Finding optimal Bayesian network given a super-structure.[J]. Journal of Machine Learning Research,2008,9(10): 2251-2286.
  • 6Neapolitan, Richard. Learning Bayesian networks[M]. NJ: Prentice Hall,2003: 674.
  • 7Heckerman, Geiger, Chickering. Learning Bayesian networks: The combination of knowledge and statistical data[J]. Machine Learning,1995,20(3): 197-243.
  • 8Scutari, Nagarajan. On identifying significant edges in graphical models of Molecular Networks[J]. Artificial Intelligence in Medicine,2013,57(3): 207-217.
  • 9钱超,徐娜,许宏科,代亮,李雪.基于蒙特卡罗模拟的交通状态辨识[J].交通运输系统工程与信息,2014,14(3):43-50. 被引量:6
  • 10Ide, Cozman. Random generation of Bayesian networks[M]. Berlin: Springer-Verlag,2002: 366-376.

二级参考文献19

  • 1皮晓亮,王正,韩皓,孙亚.基于环形线圈检测器采集信息的交通状态分类方法应用研究[J].公路交通科技,2006,23(4):115-119. 被引量:33
  • 2Moninder S,Marco,V.Construction of Bayesian network structures from data:A brief survey and an efficient algorithm [J].International Journal of Approximate Reasoning,1995,12(2):111-131..
  • 3Ye X.Development of models for understanding causal relationship among activity and travel variables [D].University of South Florida, 2006..
  • 4Primerano F, Taylor M A P, Pitaksringkarn L, et al.P.Defining and understanding trip chaining behavior [J].Transportation, 2008, 35(1): 55-72..
  • 5Nobis C.Multimodality:Facets and causes of sustainable mobility behavior [J].Transportation Research Record,2007,2010:35-44..
  • 6Currie G,Delbosc A.Exploring the trip chaining behavior of public transport users in Melburne [J].Transport Policy, 2011, 18(1): 204-210..
  • 7Janssen D,Wets G,Bruijs K,et al.Identifying behavioral principles underlying activity patterns by means of Bayesian networks[C].the 82nd Annual Meeting of the Transportation Research Board, 2003, Washington, D.C..
  • 8Jianchuan X Y, Zhicai J, Linjie G, et al.Empirical analysis of commuters’ nonwork stopmaking behavior in Beijing, China [J].Journal of Transportation Engineering, 2011, 137(5): 360-369..
  • 9Pinjari A R, Bhat C R.A multiple discretecontinuous nested extreme value (MDCNEV) model: formulation and application to non-worker activity timeuse and timing behavior on weekdays [J].Transportation Research Part B, 2010, 44(4): 562-583..
  • 10Kerner. Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory[M]. New York: Springer ,2009: 221-243.

共引文献14

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部