摘要
讨论了随机环境两性分枝过程中以条件均值增长率的上界作为规范化因子的r(α≥1)收敛问题,给出了r(α≥1)收敛的充分条件和必要条件以及L1收敛的对数判别准则,并且建立了与雌性、雄性粒子数规范化后L*(1≤d≤2)收敛的关系.
In this paper, the L* (a≥1) convergence of a bisexual branching process in a random environment, normalized by the upper bound of the conditional mean growth rate, is investigated and a necessary and suffi- cient condition for such convergence is provided respectively. In particular, a logarithmic criterion for L1 con- vergence is studied. What' s more, a strong relationship between L* (1≥ a≥2) convergence of the normalized females, normalized males, and the normalized bisexual branching process is established.
出处
《数学理论与应用》
2015年第4期25-34,共10页
Mathematical Theory and Applications
基金
国家自然科学基金项目(11571052
11171044)
湖南省国土资源科技项目(2013-28)
长沙理工大学研究生科研创新项目(GX2014B388)资助
关键词
随机环境两性分枝过程
L*-收敛
Random environment Bisexual branching process L*-- convergence