期刊文献+

基于鲁棒性小波包峭度图的滚动轴承故障诊断 被引量:9

Robust Wavelet Transform-Based Kurtogram for the Fault Diagnostics of Rolling Element Bearing
下载PDF
导出
摘要 由于基于小波包变换滤波器的设计方法仍然是采用基于样本四阶矩的谱峭度,因此在实际应用中可能会存在非鲁棒性等问题。在此基础上定义了具有鲁棒性的谱峭度系数,提出了基于小波包变换的具有鲁棒性的峭度图算法。滚动轴承的实测信号验证了所提出的方法不仅能够真实地反映谱峭度大小,而且能够准确过滤出故障瞬态冲击成分,有利于基于包络谱分析轴承故障特征频率检测,说明其具有较好的应用前景。 Due to the use of the spectral kurtosis based on the fourth sample moments,the Wavelet packet transform filter based method might suffer from the non-robustness problem in practical application.Therefore,robust spectral kurtosis coefficients are defined firstly.Subsequently,the robust Kurtogram based on wavelet packet transform is proposed.The practical data have been applied to demonstrate that the improved method not only can measure the real spectral kurtosis,but also can precisely detect the fault transient components used for the bearing fault diagnosis.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2016年第1期11-16,194,共6页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51005261)
关键词 滚动轴承 小波包变换 峭度图 鲁棒性 谱峭度 rolling element bearing wavelet packet transform kurtogram robustness spectral kurtosis
  • 相关文献

参考文献11

  • 1Antoni J. The spectral kurtosis:a useful tool for char aeterizing nonstationary signals [J]. Mechanical Sys tem and Signal Processing,2006,20 (2):282-307.
  • 2Antoni J, Randall R B. The spectral kurtosis: applica- tion to vibratory surveillance and diagnostics of rota- ting machines [J]. Mechanical System and Signal Proeessing, 2006,20 (2) : 308-331.
  • 3Antoni J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical System and Signal Processing,2007,21 (1): 108-124.
  • 4Lei Y G, I.in J, He Z J, et al. Application of an im- proved kurtogram method for fault diagnosis of rolling element bearings [J]. Mechanical System and Signal Processing,2011,25(5) : 1738-1749.
  • 5张志刚,石晓辉,施全,汤宝平.基于改进EMD和谱峭度法滚动轴承故障特征提取[J].振动.测试与诊断,2013,33(3):478-482. 被引量:76
  • 6从飞云,陈进,董广明.基于谱峭度和AR模型的滚动轴承故障诊断[J].振动.测试与诊断,2012,32(4):538-541. 被引量:26
  • 7Moors J J A. A quantile alternative for kurtosis [J]. The Statistician, 1988,37:25-32.
  • 8Hogg R V. More light on the kurtosis and related sta tisties [J]. Journal of the American Statistical Associ ation, 1972,67:422-424.
  • 9Hogg R V. Adaptive robust procedures: a partial re view and some suggestions for future applications and theory[J]. Journal of the American Statistical Associ ation, 1974,69 : 909-923.
  • 10Crow E L,Siddiqui M M. Robust estimation of location [J]. Journal of the American Statistical Association, 1967,62:353-389.

二级参考文献28

  • 1李常有,徐敏强,郭耸.基于改进的Hilbert-Huang变换的滚动轴承故障诊断[J].振动与冲击,2007,26(4):39-41. 被引量:18
  • 2沈路 周晓军 张文斌 等.基于形态滤波与灰色关联度的滚动轴承故障诊断.振动与冲击,2009,(11):25-28.
  • 3McFadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration, 1984,96 (1) : 69-82.
  • 4Dwyer R F. Detection of non-gaussian signals by fre- quency domain kurtosis estimation [C]//IEEE Inter- national Conference on Acoustics, Speech and Signal Processing-Proceedings. Boston, USA : [s. n. ], 1983 : 607-610.
  • 5Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006,20(2) : 282-307.
  • 6Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007,21 ( 1 ) : 108-124.
  • 7Antoni J, Randall R B. The spectral kurtosis: appli- cation to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing, 2006,20 (2) : 308-331.
  • 8Cheng Junsheng, Yu Dejie, Yang Yu. A fault diagno- sis approach for roller bearings based on EMD method and AR model [J]. Mechanical Systems and Signal Processing, 2006, 20 (2) : 350-362.
  • 9Cong Feiyun, Chen Jing, Dong Guangming. Research on the order selection of the autoregressive modelling for rolling bearing diagnosis[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224: 2289- 2297.
  • 10Huang N E,Shen Z, Long S R,et al. The empiricalmode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis[J], Pro-ceeding of Royal Society London A, 1998(454) : 903-995.

共引文献97

同被引文献61

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部