期刊文献+

石墨烯纳米带修饰微悬臂梁的光热偏转特性研究 被引量:1

Photothermal deflection characteristics of graphene nanoribbon decorated microcantilever
下载PDF
导出
摘要 针对传统双层悬臂梁存在吸收效率低的难题,提出了一种通过激发石墨烯纳米带表面等离激元以提高悬臂梁光热偏转特性的方法。首先,基于有限元法建立了石墨烯纳米带修饰微悬臂梁的光学模型,并通过优化石墨烯纳米带及悬臂梁的结构参数,实现了对入射光波的完美吸收(100%);其次,建立了悬臂梁的热力学模型,采用Ansys软件仿真计算了脉冲激光参数对悬臂梁光热偏转特性的影响。结果表明:在波长为10.7μm处,石墨烯纳米带修饰微悬臂梁的光热偏转灵敏度是传统双层悬臂梁光热偏转灵敏度的5倍,并且,在9.5-13.5μm的整个宽波段范围内,石墨烯纳米带修饰微悬臂梁的光热偏转灵敏度均大于传统双层悬臂梁光热偏转灵敏度的4倍。 To solve the low absorbance of the traditional bimaterial cantilever, a method exploring the surface plasmons in gra phene nanoribbon was proposed to improve the photothermal deflection sensitivity of the microcantilever. Firstly, an optical model of the cantilever was built based on the finite element method. The absorbance of the cantilever can be improved up to 100% by optimizing the structure parameters of the graphene nanoribbon and the cantilever. Secondly, the thermodynamic model of the cantilever was also built using Ansys software, and the influence of the laser parameters on the photothermal deflection characteristics of cantilever was also investigated. Simulation results showed that the sensitivity of the graphene nanoribbon decorated cantilever was 5 times larger than that of the traditional bimaterial cantilever at 10. 7 μm, and 4 times within a wide range of infrared waveband from 9.5-13. 5μm.
出处 《中国科技论文》 CAS 北大核心 2015年第23期2755-2759,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20120191120021) 国家自然科学基金资助项目(61405021) 中央高校基本科研业务费专项资金资助项目(CDJZR12120004 106112013CDJZR120006)
关键词 光电子学与激光技术 光热偏转 有限元 悬臂梁 石墨烯 表面等离激元 optoelectronics and laser technology photothermal deflection finite element method cantilever graphene surface plasmon polariton
  • 相关文献

参考文献26

  • 1BAGHERI M, CHAE I, LEE D, et al. Selective detec- tion of physisorbed hydrocarbons using photothermal cantilever deflection spectroscopy [J]. Sensors and Ac- tuators B.. Chemical, 2014, 191: 765-769.
  • 2BAJWA N, MALDONADO C J, THUNDAT T, et al. Piezoresistive measurement of Swine H1N1 Hemagglu- tinin peptide binding with microcantilever arrays[J]. A- merican Institute of Physics Advances, 2014, 4 (3): 037118.
  • 3KIM S, LEE D, THUNDAT T. Photothermal cantile- ver deflection spectroscopy [J]. European Physical Journal Techniques and Instrumentation, 2014, 1 (7) : 1-12.
  • 4WEI W, ZHU Y, LIN C, et al. All-optical cantilever- enhanced photoacoustic spectroscopy in the open envi- ronment [J]. International Journal of Thermophysics, 2015, 36(5) : 1116-1122.
  • 5FINOT E, ROUGER V, MARKEY L, et al. Visible photothermal deflection spectroscopy using microcanti- levers[J]. Sensors and Actuators B.. Chemical, 2012, 169 : 222-228.
  • 6van NESTE C W, SENESAC LR, YI D, et al. Stand- off detection of explosive residues using photothermal microcantilevers[J]. Applied Physics Letters, 2008, 92(13) : 134102.
  • 7ROSENBERGER M R, KWON B, CAHILL D G, et al. Impact of silicon nitride thickness on the infrared sensitivity of silicon nitride-aluminum microcantilevers [J]. Sensors and Actuators A: Physical, 2012, 185: 17-23.
  • 8KWON B, ROSENBERGER M, BHARGAVA R, et al. Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation [J]. Review of Scientific Instruments, 2012, 83 (1): 015003-015007.
  • 9韦玮,朱永,林成,田莉,许祖稳,农金鹏.基于第一性原理计算的掺杂柔性黑硅吸收光谱特性分析[J].光谱学与光谱分析,2014,34(4):910-914. 被引量:1
  • 10XU Z D, JIANG J, GARTIA M R, et al. Monolithic integrations of slanted silicon nanostructures on 3D mi- crostructures and their application to surface-enhanced raman spectroscopy [J]. The Journal of Physical Chem- istry C, 2012, 116 (45) :24161-24170.

二级参考文献40

共引文献5

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部