期刊文献+

基于反正规序技术的Weyl对应规则 被引量:2

Weyl prescription based on the anti-normal ordering technology
下载PDF
导出
摘要 利用微分-积分技巧和算符微商方法研究Wigner算符和Weyl对应规则,给出了Wigner算符的正规序形式,得到了一些特殊函数的新的微分形式.更有意义的是克服了积分发散的困难,给出了Wigner算符和Weyl对应规则的反正规序微分型表示式.最后给出几个计算实例. Wigner operator and Weyl prescription are studied by virtue of the skill of differential-integral and the method of operators' differential quotient. The differential formula of Wigner operator in normal ordering is given, and new differential formulae of some special functions are obtained. It is more important that the integral divergent difficulty is smoothed away and the differential formula of Wigner operator and the Weyl prescription in anti-normal ordering are derived. Several examples are calculated.
出处 《大学物理》 北大核心 2016年第2期5-10,共6页 College Physics
关键词 有序算符 Wigner算符 算符微商 积分发散 ordered operator Wigner operator differential quotient of operators integral divergence
  • 相关文献

参考文献6

  • 1Weyl H.The Theory of Group and Quantum Mechanics[M].New York:Dover publisher,1931:272.
  • 2徐世民,张运海,徐兴磊.经典函数与量子算符的Weyl对应[J].大学物理,2012,31(4):1-5. 被引量:5
  • 3范洪义.量子力学表象与变换轮[M].上海:上海科学技术出版社,1997:150-151.
  • 4Fan H Y.Operator Ordering in Quantum Optics Theory and The development of Dirac’s Symbolic Method[J].J Opt B:Quantum Semicl Opt,2003,5:R147.
  • 5徐世民,徐兴磊,李洪奇,王继锁.复合函数算符的微商法则及其在量子物理中的应用[J].物理学报,2014,63(24):26-36. 被引量:1
  • 6Eldelyi A.Higher Transcendental Functions(Bateman Manuscript Project)[M].New York:Mc Graw-Hill,1953:1.

二级参考文献27

  • 1徐世民 徐兴磊 李洪奇 王继锁.物理学报,2009,58:2174-2174.
  • 2陈鄂生.量子力学基础教程[M].济南:山东大学出版社,2006.
  • 3Weyl H. Quantenmechanik und Gruppentheorie [ J ]. Z Phys, 1927,46 : 1-46.
  • 4Weyl H. The Theory of Group and Quantum Mechanics [ M ]. New York: Dover publisher, 1931:272-80.
  • 5Wigner E. On the quantum correction for thermodynamic equilibrium[ J]. Phys Rev, 1932,40:749-759.
  • 6Wunsche A. About integration within ordered products in quantum optics [J]. J Opt B: Quantum Semiclass. Opt. 1999, 1(3) R11.
  • 7H Y Fan. Operator ordering in quantum optics theory and the development of Dirac' s symbolic method [ J ]. J Opt B: Quantum Semiclass. Opt. 2003,5(4) :R147.
  • 8H Y Fan. Weyl ordering quantum mechanical operators by virtue of the IWWOP technique [J]. J Phys A, 1992, 25( 11 ) :3443-3447.
  • 9H Y Fan, Y Fan. Weyl ordering for entangled state representation [ J ]. Mod Phys Lett A, 1997, 12(31) :2325-2329.
  • 10H Y Fan,Y Fan.Weyl ordering for entangled state representation[J]. Intern J Mod Phys A, 2002, 17(5) :701-708.

共引文献4

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部