期刊文献+

Response of North Pacific Eastern Subtropical Mode Water to Greenhouse Gas Versus Aerosol Forcing 被引量:1

Response of North Pacific Eastern Subtropical Mode Water to Greenhouse Gas Versus Aerosol Forcing
下载PDF
导出
摘要 Mode water is a distinct water mass characterized by a near vertical homogeneous layer or low potential vorticity, and is considered essential for understanding ocean climate variability. Based on the output of GFDL CM3, this study investigates the response of eastern subtropical mode water (ESTMW) in the North Pacific to two different single forcings: greenhouse gases (GHGs) and aerosol. Under GHG forcing, ESTMW is produced on lighter isopycnal surfaces and is decreased in volume. Under aerosol forcing, in sharp contrast, it is produced on denser isopycnal surfaces and is increased in volume. The main reason for the opposite response is because surface ocean-to-atmosphere latent heat flux change over the ESTMW formation region shoals the mixed layer and thus weakens the lateral induction under GHG forcing, but deepens the mixed layer and thus strengthens the lateral induction under aerosol forcing. In addition, local wind changes are also favorable to the opposite response of ESTMW production to GHG versus aerosol. Mode water is a distinct water mass characterized by a near vertical homogeneous layer or low potential vorticity, and is considered essential for understanding ocean climate variability. Based on the output of GFDL CM3, this study investigates the response of eastern subtropical mode water (ESTMW) in the North Pacific to two different single forcings: greenhouse gases (GHGs) and aerosol. Under GHG forcing, ESTMW is produced on lighter isopycnal surfaces and is decreased in volume. Under aerosol forcing, in sharp contrast, it is produced on denser isopycnal surfaces and is increased in volume. The main reason for the opposite response is because surface ocean-to-atmosphere latent heat flux change over the ESTMW formation region shoals the mixed layer and thus weakens the lateral induction under GHG forcing, but deepens the mixed layer and thus strengthens the lateral induction under aerosol forcing. In addition, local wind changes are also favorable to the opposite response of ESTMW production to GHG versus aerosol.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第4期522-532,共11页 大气科学进展(英文版)
基金 supported by the National Basic Research Program of China (Grant No. 2012CB955600) National Natural Science Foundation of China (Grant Nos. 41376009 and 41176006) Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA11010302 and XDA11010201) the Joint Program of Shandong Province and National Natural Science Foundation of China (Grant No.U1406401)
关键词 greenhouse gases AEROSOL mode water lateral induction North Pacific greenhouse gases, aerosol, mode water, lateral induction, North Pacific
  • 相关文献

参考文献1

二级参考文献29

  • 1Aoki, Y., Suga, T., and Hanawa, K., 2002. Subsurface sub- tropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. Journal Physical Oceanogra-phy, 32:2299-2311.
  • 2Bao, Z., Wen, Z., and Wu, R. G., 2009. Variability of aerosol optical depth over east Asia and its possible impacts. Journal of Geophysical Research, 114, D05203, DOI: 10.1029/2008 JD010603.
  • 3Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J. C., Ginoux, P., Lin, S. J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Del- worth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H. C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stem, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F., 2011. The dynamical core, physical parameterizations, and basic simulation characteris- tics of the atmospheric component AM3 of the GFDL global counled model CM3. Journal of Climate. 24:3484-3519.
  • 4Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R., Gnanadesikan, A., Hurlin, W. L, Lee, H. C., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh, N., 2011. The GFDL's CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. Journal of Climate, 24: 3520- 3544, DOI: 10.1175/2011JCLI3964.1.
  • 5Kobashi, F., Mitsudera, H., and Xie, S. P., 2006. Three sub- tropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogensis. Journal of Geophysical Research-Oceans, 111, C09033, DOI: 10.1029/ 2006JC003479.
  • 6Kobashi, F., Xie, S. P., Iwasaka, N., and Sakamoto, T. T., 2008. Deep atmospheric response to the North Pacific oceanic sub- tropical front in spring. Journal of Climate, 21: 5960-5975.
  • 7Kubokawa, A., 1997. A two-level model of subtropical gyre and subtropical countercurrent. Journal of Oceanography, 53: 231-244.
  • 8Kubokawa, A., 1999. Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercur- rent. Journal of Physical Oceanography, 29:1314-1333.
  • 9Kubokawa, A., and Inui, T., 1999. Subtropical countercurrent in an idealized ocean GCM. Journal of Physical Oceanography, 29: 1303-1313.
  • 10Lee, H. C., 2009. Impact of atmospheric CO2 doubling on the North Pacific Subtropical Mode Water. Geophysical Re- search Letters, 36, L06602, DOI: 10.1029/2008GL037075.

共引文献2

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部