期刊文献+

非线性粘弹性杆波动方程的精确解

Exact Solutions for Wave Equation of Nonlinear Viscoelastic Rod
下载PDF
导出
摘要 应用推广的Tanh函数方法对非线性粘弹性杆波动方程进行了求解.得到了孤波解、有理数解、三角函数周期波解等一些不同形式的精确解.这种方法的主要思想是充分利用Riccati方程,用它的解去构造原方程的解,并且能从参数的符号准确地判断出行波解的类型和个数.从求解过程可以看出,该方法是一种简便、有效的方法,并且可用于求解其它非线性方程或方程组. The wave equation of nonlinear viscoelastic rod was solved by the extended Tanh-function method. These exact solutions include solitary wave solutions, rational number solutions and trigono- metric function periodic wave solutions. The key idea of this method is to take full advantage of Riccati equation and use its solutions to construct the solutions of the original equation. The sign of the parameters can be used to exactly judge the numbers and types of these traveling wave solutions. The solving process shows that the extended Tanh-function method is simple, effective and it can be used for many other nonlinear equations or equation sets. Key words: extended Tanh-function method; nonlinear viscoelastic rod; wave equation; exact solution
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2016年第1期19-23,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11464027) 甘肃省高等学校科研项目资助项目(2014A-053) 兰州交通大学青年科学基金资助项目(2013026 2014023)
关键词 推广的Tanh函数方法 非线性粘弹性杆 波动方程 精确解 extended Tanh-function method nonlinear viscoelastic rod wave equation exact solution
  • 相关文献

参考文献3

二级参考文献25

  • 1张善元 庄蔚.非线性弹性杆中的应变孤波[J].力学学报,1988,20(1):58-66.
  • 2Wang M L.Exact solutions for a compound KdV-Burgers equation[J].Phys.Lett.A,1996,213:279.
  • 3Samsonov A M.Evolution of a soliton in a nonlinearly elastic rod of variable cross-section[J].Soc.Phys.Dokl.,1985,29:586-587.
  • 4Samsonov A M,Sokurinskaya E V.Solitary longitudinal waves in an inhomogeneous nonlinear elastic rod[J].J.Appl.Math.Mech.,1988,51:376-381.
  • 5Samsonov A M.Nonlinear strain waves in elastic waveguides[C].in:A.Jeffrey,J.Engelbreght (Eds.),Nonlinear Waves in Solids.New York:Springer,1994:349-382.
  • 6Dai H H,Huo Y.Solitary waves in an inhomogeneous rod composed of a general hyperelastic material[J].Wave Motion,2002,35:55-69.
  • 7高歌.湍流的耗散与弥散相互作用理论.中国科学A 辑,1985,(5):457-465.
  • 8Wang M L.Solitary wave solutions for variant Boussinesq equations[J].Phys.Lett.A,1995,199:169.
  • 9Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering In: London Mathematical Society Lecture Note Series vol 149( Cambridge: Cambridge University Press).
  • 10Miura M R 1978 Backlund Transformation (Berlin: Springer-Verlag).

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部