期刊文献+

近红外光谱结合支持向量机快速识别树种 被引量:5

Fast Identification of Wood Species by Near Infrared Spectroscopy Coupling with Support Vector Machine
下载PDF
导出
摘要 利用阿达玛变换近红外光谱结合支持向量机,对制浆造纸常用木材树种的快速识别进行研究。将各树种近红外光谱先进行多点平滑和标准正态变换预处理以消除噪音干扰和光散射导致的测量偏差,然后基于不同建模策略建立一对多和一对一两种支持向量机模型,考察这两种模型对多树种属间分类和种间分类的预测能力,并与传统的偏最小二乘判别分析分类法进行对比。结果表明,支持向量机预测模型对桉木、相思木、杨木、水杉等树种的属间分类正确率达到98%以上,种间分类正确率均达到95%以上,在处理复杂分类问题时模型稳健性明显优于传统分类方法,从方法上证明了近红外技术工业化应用的可能性,为进一步建立近红外在线检测木片材性分析系统奠定了基础。 Fast identification of different wood materials for papermaking by portable hadamard transform near infrared spectroscopy( HT-NIR) in combination with support vector machines( SVM) was investigated in present study. Savitzky-Golay smoothing method and standard normal variation were used to pretreat the spectral for eliminating noise and measurement deviation caused by light scattering. The one-against-all model and one-against-one model were constructed based on different SVM modeling strategies. The prediction performance for genera classification and species classification of two SVM models was evaluated with partial least squares discriminant analysis( PLS-DA). In this study,SVM was applied to identify different wood species,such as eucalyptus,acacia,populus and metasequoia. The genera correct classification rates and species correct classification rates achieved above 98% and 95%,respectively. The SVM method demonstrated its integrated merits in solving complex classification compared with the traditional linear machine learning methods. The study results showed the feasibility of industrial application of NIR technology and laid the foundation for building the on-line NIR analysis system for wood chips.
出处 《林产化学与工业》 EI CAS CSCD 北大核心 2016年第1期55-60,共6页 Chemistry and Industry of Forest Products
基金 国家林业局948技术引进项目(2014-4-31)
关键词 近红外光谱 支持向量机 树种识别 制浆 near infrared spectroscopy support vector machines wood species identification pulp
  • 相关文献

参考文献16

  • 1SCHWANNINGER M, RODRIGUES J C, FACKLER K. A review of band assignments in near infrared spectra of wood and wood components [ J]. Journal of Near Infrared Spectroscopy,2011,19(5 ) :287-308.
  • 2TSUCHIKAWA S,SCHWANNINGER M. A review of recent near-infrared research for wood and paper (part 2 ) [ J ]. Applied Spectroscopy Reviews,2013,48(7 ) :560-587.
  • 3TAVASSOLI N,TSAI W, BICHO P, et al. Multivariate classification of pulp NIR spectra for end-product properties using discrete wavelet transform with orthogonal signal correction [ J ]. Analytical Methods,2014,6 (22) :8906-8914.
  • 4ISHIZUKA S, SAKAI Y, TANAKA-ODA A. Quantifying lignin "and holocellulose content in coniferous decayed wood using near-infrared reflectance spectroscopy[ J]. Journal of Forest Research,2014,19( 1 ) :233-237.
  • 5BACHLE H, ZIMMER B, WEGENER G. Classification of thermally modified wood by FI'-NIR spectroscopy and SIMCA [ J ]. Wood Science and Technology,2012,46 (6) : 1181-1192.
  • 6江泽慧,李改云,王戈,黄安民.近红外光谱法测定毛竹综纤维素的含量研究[J].林产化学与工业,2007,27(1):15-18. 被引量:25
  • 7杨忠,吕斌,黄安民,刘亚娜,谢序勤.近红外光谱技术快速识别针叶材和阔叶材的研究[J].光谱学与光谱分析,2012,32(7):1785-1789. 被引量:20
  • 8CARBALLO-MEILAN A, GOODMAN A M, BARON M G, et al. A specific case in the classification of woods by FTIR and chemometric: Discrimination of fagales from malpighiales [ J ]. Cellulose, 2014,21 ( 1 ) : 261-273.
  • 9马明宇,王桂芸,黄安民,张卓勇,相玉红,顾轩.人工神经网络结合近红外光谱用于木材树种识别[J].光谱学与光谱分析,2012,32(9):2377-2381. 被引量:18
  • 10MORA C R, SCHIMLECK L R. Kernel regression methods for the prediction of wood properties of Pinus taeda using near infrared spectroscopy [J]. Wood Science and Technology,2010,44(4) :561-578.

二级参考文献56

共引文献65

同被引文献60

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部