期刊文献+

自适应的模糊谱聚类算法在文本聚类中的应用 被引量:1

Application of Auto-adaptation Fuzzy Spectral Clustering Algorithm in Text Clustering
下载PDF
导出
摘要 传统聚类算法如k-means算法存在对样本空间形状敏感、一个样本点只能严格属于一个聚簇、需要人工指定聚簇数目等不足,这些不足之处都限制了文档聚类质量的提升。现有的模糊谱聚类算法只能解决前两个问题,而对于聚簇数目的自动确定却无能为力,因此本文提出一种自适应模糊谱聚类算法,该算法在模糊谱聚类的基础上引入自适应算法,解决聚类数目需要人工指定的问题。实验表明,将该方法用于文本聚类中可以取得较好的效果。 For traditional spectral clustering algorithms such as k-means algorithm, there exist a lot of deficiencies, for example its sensitivity on the shapes of the sample space, a sample point can only strictly belong to a cluster, need to specify the cluster number by manual work and so on, and these deficiencies limit the document clustering quality improvement. The existing fuzzy spectral clustering algorithm can only solve the first two problems, and the automatic determination of the number of clusters can not be determined. A kind of adaptive fuzzy spectral clustering algorithm was put forwards. The algorithm introduced the adaptive algorithm based on Fuzzy spectral clustering, which can solve the problem that the number of clusters should be specified manually. Experiments show that the proposed method can be used in text clustering and get the excellent effect.
出处 《贵州大学学报(自然科学版)》 2015年第6期75-78,共4页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目资助(61363066)
关键词 谱聚类 自适应 模糊聚类 spectral clustering auto-adaptation fuzzy clustering
  • 相关文献

参考文献7

  • 1蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:188
  • 2Bezdek J, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Comput Geosci[ J ]. Computers & Geosciences, 1984,10(84) :191 -203.
  • 3Zeshui Xu,Junjie Wu.Intuitionistic fuzzy C-means clustering algorithms[J].Journal of Systems Engineering and Electronics,2010,21(4):580-590. 被引量:20
  • 4Von Luxburg U. A Tutorial on Spectral Clustering[J]. Statistics & Computing, 2007, 17(4) :395 -416.
  • 5Bach F R, Jordan M I. Learning Spectral Clustering [ J ]. Ad- vances in Neural Information Processing Systems, 2004, 7 (2):2006.
  • 6Lv L, Yang W, Yang Y, et al. Overlapping community detection algorithms in complex networks based on the fuzzy spectral cluste- ring[ C ]//Software Engineering and Service Science ( ICSESS ) , 2013 4th IEEE International Conference, Beijing: IEEE, 2013 : 816 -819.
  • 7姚清耘,刘功申,李翔.基于向量空间模型的文本聚类算法[J].计算机工程,2008,34(18):39-41. 被引量:50

二级参考文献36

  • 1张洪美,徐泽水,陈琦.直觉模糊集的聚类方法研究[J].控制与决策,2007,22(8):882-888. 被引量:64
  • 2王永成.中文信息处理技术及其基础[M].上海:上海交通大学出版社,1990..
  • 3Jain A, Murty M, Flynn P. Data clustering.. A Review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323.
  • 4Fiedler M. Algebraic connectivity of graphs. Czech, Math. J. , 1973,23: 298-305.
  • 5Malik J,Belongie S,Leung T, et al. Contour and texture analysis for image segmentation In Perceptual Organization for Artificial Vision Systems. Kluwer, 2000.
  • 6Weiss Y. Segmentation using eigenvectors: A unified view//International Conference on Computer Vision 1999.
  • 7Shi J,Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905.
  • 8Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI,1993, 15(11):1101-1113.
  • 9Hagen L, Kahng A 13. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 1992,11 (9) : 1074-1085.
  • 10Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22(5) : 504- 525.

共引文献254

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部