摘要
藻胆体是蓝藻及红藻主要的捕光天线,可以将吸收的光能传递给类囊体膜。该文首先对蓝藻及红藻藻胆体中各藻胆蛋白组分的能量传递规律,及藻胆体与类囊体膜之间能量传递机制进行了概述,认为能量传递效率与各蛋白组分的相对位置及其相互之间的光谱匹配程度有关;能量传递需要多种机制的共同参与,只是所占比例不同;状态转换不是在极端的实验条件下才发生的,而在日常条件下就可以发生。此外,还概述了藻胆体或藻胆蛋白与高等植物类囊体膜之间的能量传递,认为藻胆体或藻胆蛋白与高等植物类囊体之间能发生能量传递,不同的藻胆蛋白与高等植物类囊体之间的传递效率有所不同。最后对建立高效的植物光能传递系统的研究方向提出了展望。
Phycobilisomes are the major light--harvesting antenna of cyanobacteria and Rhodophyta which can absorb and deliver light energy to the thylakoid membrane. In this paper, law of energy transfer of phycobiliproteins components of Phycobilisomes and mechanisms of energy transfer between phycobilisomes and thylakoid membrane are summarized firstly. It is concluded that the efficiency of energy transfer is related to the relative position of the phycobiliprotein components and the degree 'of spectral match among them. It is needed several mechanisms of energy transfer to participate their energy transfer, only with different proportion among them. State transition does not only occur under extreme experimental conditions, but it can occur under routine conditions. In addition, an overview of the energy transfer between phycobilisomes or phycobiIiprotein and thylakoid membrane of higher plants are summarized. It is belived that energy can be delivered from phycobilisomes or phycobiliprotein to thylakoid membrane of higher plants. Different phycobiliprotein shows different efficiency of energy transfer. In the end, the prospects for the future establishment of efficient energy systerm of high plant are put forward.
出处
《科技资讯》
2015年第27期245-251,共7页
Science & Technology Information
基金
国家转基因生物新品种培育科技重大专项项目(2014ZX08001-004-001)资助
关键词
藻胆体
藻胆蛋白
类囊体膜
高等植物
能量传递
Phycobilisomes
Phycobiliprotein
Thylakoid Membrane
High Plants
Energy Transfer