期刊文献+

Dynamics of Anchor Last Deployment of Submersible Buoy System 被引量:1

Dynamics of Anchor Last Deployment of Submersible Buoy System
下载PDF
导出
摘要 Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur and may cause the snap of cables,especially during the deployment period.This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods.By applying the lumped mass approach,a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force,tension force and impact force between components of submersible buoy system and seabed.Numerical integration method is used to solve the differential equations.The simulation output includes tension force,trajectory,profile and dropping location and impact force of submersible buoys.In addition,the deployment experiment of a simplified submersible buoy model was carried out.The profile and different nodes' velocities of the submersible buoy are obtained.By comparing the results of the two methods,it is found that the numerical model well simulates the actual process and conditions of the experiment.The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy.The study results will help to understand the conditions of submersible buoy's deployment,operation and recovery,and can be used to guide the design and optimization of the system. Submersible buoy systems are widely used for oceanographic research, ocean engineering and coastal defense. Severe sea environment has obvious effects on the dynamics of submersible buoy systems. Huge tension can occur and may cause the snap of cables, especially during the deployment period. This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods. By applying the lumped mass approach, a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force, tension force and impact force between components of submersible buoy system and seabed. Numerical integration method is used to solve the differential equations. The simulation output includes tension force, trajectory, profile and dropping location and impact force of submersible buoys. In addition, the deployment experi- ment of a simplified submersible buoy model was carried out. The profile and different nodes' velocities of the submersible buoy are obtained. By comparing the results of the two methods, it is found that the numerical model well simulates the actual process and conditions of the experiment. The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy. The study results will help to understand the conditions of submersible buoy's deployment, operation and recovery, and can be used to guide the design and optimization of the system.
出处 《Journal of Ocean University of China》 SCIE CAS 2016年第1期69-77,共9页 中国海洋大学学报(英文版)
基金 supported by the Program for Excellent University Talents in New Century (NCET-12-0500) the National Natural Science Foundation of China (No.51175484) the Science Foundation of Shandong Province (No.ZR2010EM052) the support of the Project 111 (No.B14028) the Key Ocean Engineering Laboratory of Shandong Province
关键词 系统动力学 浮标系统 潜水 部署 水动力系统 数值积分方法 实验条件 海洋工程 submersible buoy anchor last deployment dynamic simulation experiment snap slack taut
  • 相关文献

参考文献1

二级参考文献1

同被引文献3

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部