期刊文献+

工艺参数对图案化金属铜膜结构和光学性能的影响

Influence of Processing Parameters on the Crystal Structure and Optical Absorption of Copper Wire-Patterned Films
下载PDF
导出
摘要 为了系统研究工艺参数对图案化金属铜膜的影响,进一步优化产物的结构和光学性能,研究通过改变薄膜厚度、衬底偏压和衬底温度等工艺参数在玻璃衬底上沉积了图案化金属铜膜。利用粉末x射线衍射仪和紫外可见分光光度计分别研究了工艺参数对图案化金属铜膜的晶体结构和光学吸收特性的影响。研究结果表明,在晶体结构方面,图案化金属铜膜具有良好的Cu(111)择优取向,并且衍射峰强度随薄膜厚度、衬底温度的增加而增强,随衬底偏压的增加而减弱。在光学性质方面,图案化金属铜膜在630-660nm红光波段出现反常光学吸收。而且,吸收峰的强度、峰位和半高宽可以通过调节薄膜厚度、衬底偏压和衬底温度加以控制。 To systemically investigate the influence of processing parameters and further optimize the per- formance of products, various copper wire-patterned films were deposited on glass substrates via changing the film thickness, substrate bias voltage and temperature. The achieved copper wire-patterned films were characterized by a powder X-ray diffractometer and a UV/VIS spectrometer to study the influence of pro- cessing parameters on the crystal structure and optical absorption respectively. The results showed that the samples were of a preferential orientation of Cu(111), whose intensity increased with the increasing of film thickness and substrate temperature while decreased with the increasing of substrate bias voltage. The samples also exhibited an abnormal optical absorption at the red-light range of about 630-660nm, which was found to be adjustable by changing the film thickness, substrate bias and substrate temperature.
出处 《常州大学学报(自然科学版)》 CAS 2016年第1期23-27,共5页 Journal of Changzhou University:Natural Science Edition
关键词 小入射角沉积 图案化金属铜膜 晶体结构 反常光学吸收 small incident angle deposition copper wire-patterned film crystal structure abnormal optical absorption
  • 相关文献

参考文献14

  • 1DOBIERZEWSKA-MOZRZYMAS E, BIEGA?SKI P. Optical properties of discontinuous copper films [J]. Applied Optics, 1993,32: 2345-2350.
  • 2DUA H, LEE S W, GONG J, et al. Size effect of nano-copper films on complex optical constant and permittivity in infrared region [J]. Materials Letters, 2004,58: 1117-1120.
  • 3FRANK F C, VAN DER MERWE J H. One-dimensional dislocations. I. Static theory [J]. Proceedings of the Royal Society of London, 1949,198(1053): 205-216.
  • 4DOMN-MOR I, BARKAY Z, FILIP-GRANIT N, et al. Ultrathin gold island films on silanized glass morphology and optical properties [J]. Chemistry of Materials, 2004,16(18): 3476-3483.
  • 5HAYNES C L, VAN DUYNE R P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J]. Journal of Physical Chemistry B, 2001,105(24): 5599-5611.
  • 6RECHBERGER W, HOHENAU A, LEITNER A, et al. Optical properities of two interacting gold nanoparticles [J]. Optics Communications, 2003,220: 137-141.
  • 7CHANG C K, LIN D J, YEH C S, et al. Similarities and differences for light induced surface plasmons in one- and two-dimentional, symmetrical metallic nanostructures [J]. Optics Letters, 2006(15): 2341-2343.
  • 8HENZIE J, LEE M H, ODOM T W. Multiscale patterning of plasmonic metamaterials [J]. Nature Nanotechnology, 2007(9): 549-554.
  • 9GUO H C, NAU D, RADKE A, et al. Large-area metallic photonic crystal fabrication with interference lithography and dry etching [J]. Applied Physics B, 2005, 81: 271-275.
  • 10李星星,蒋美萍,朱贤方,苏江滨.图案化金属铜膜的SIAD法自组装制备[J].科学通报,2013,58(18):1764-1768. 被引量:1

二级参考文献23

  • 1Ebbesen T W,Lezec H J.Extraordinary optical transmission through sub-wavelength hole arrays.Nature,1998,391:667-669.
  • 2Chen H A,Long J L,Lin Y H,et al.Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques.Appl Phys,2011,110:054302.
  • 3Gordon R,Brolo A G.Increased cut-off wavelength for asubwavelength hole in a real metal.Opt Express,2005,13:1933-1938.
  • 4Pile D F P,Ogawa T,Gramotnev D K.Theoretical and experimental investigation of strongly localized plasmons on triangual metal wedges for subwavelength waveguiding.Appl Phys Lett,2005,87:061106.
  • 5Hori H,Tawa K,Kintaka K,et al.Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance.Opt Rev,2009,16:216-221.
  • 6Zhang S,Liu H,Mu G.Electromagnetic enhancement by a periodic array of nanogrooves in metallic substrate.JOSA A,2011,28:879-886.
  • 7Tanaka K,Tanaka M.Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide.Appl Phys Lett,2003,82:1158-1160.
  • 8Kusunoki F,Yotsuya T,Takahara J,et al.Propagation properties of guided waves in index-guided two-dimensional optical waveguides.Appl Phys Lett,2005,86:1101-1104.
  • 9Alouach H,Mankey G J.Texture orientation of glancing angle deposited copper nanowire arrays.J Vac Sci Technol A,2004,22:1379-1382.
  • 10Andrew W,Barnes W L.Plasmonic materials.Adv Mater,2007,19:3771-3782.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部