期刊文献+

分布式环境中基于市场机制的资源自适应调价策略

Self-adaptive price adjustment strategy based on market mechanism in distributed environment
下载PDF
导出
摘要 针对分布式环境中资源定价面临的资源使用率、价格、收益三者之间的冲突问题,提出一种基于市场机制的资源自适应调价策略。该策略在保障资源提供者收益前提下,通过资源价格自适应动态调整来平衡资源节点上的任务分配与资源提供者收益之间的冲突。理论分析证明了调价策略的有效性,并在此基础上设计了自适应调价算法。仿真实验采用真实分布式系统中资源节点信息作为实验节点的性能参数,在大规模网格任务中检验了自适应调价策略的性能表现。实验结果表明,基于市场机制的"自适应调价策略"在保障资源收益、均衡资源利用率的性能表现方面显著优于传统的定价策略。 To solve the resource pricing problem of the collision among resource utilization, price and benefits in distrib- uted computing environments, a self-adaptive pricing strategy of resource services based on market mechanism was pro- posed. On the premise of the local resource benefits, this adaptive pricing strategy guaranteed the resource to self-adapt the price dYnamically so as to balance the collision between the assigned tasks on the resource node and the benefits of the resource provider. The theoretical analysis proved the effectiveness of the pricing strategy, and the algorithm of the pricing strategy was designed. Resources node information in the real distributed systems was used as the performance parameters of experimental node in the simulation experiments, and the performance of the adaptive pricing strategy was tested in a large-scale grid mission. Experimental results show that, compared with the traditional pricing strategies, the adaptive pricing strategy based on market mechanism has vastly superior performance on the resource benefits and the balance of resource utilization.
出处 《通信学报》 EI CSCD 北大核心 2016年第2期31-37,共7页 Journal on Communications
基金 国家自然科学基金资助项目(No.81573985) 湖南省科技厅基金资助项目(No.2011RS4025 No.2013GK3143) 湖南省教育厅优秀青年基金资助项目(No.13B079)~~
关键词 分布式计算 市场机制 自适应 调价策略 distributed computing, market mechanism, self-adaptive, price adjustment strategy
  • 相关文献

参考文献25

  • 1FOSTER I, KESSELMAN C. The grid: blueprint for a new computing infrastructure, second edition [M]. Singapore: Elsevier Inc. 2004.
  • 2罗军舟,金嘉晖,宋爱波,东方.云计算:体系架构与关键技术[J].通信学报,2011,32(7):3-21. 被引量:826
  • 3FOSTER I. What is the Grid? a three point checklist [J]. GRID Today, 2002, 1(6): 20-27.
  • 4BUYYA R. Economic-based distributed resource management and scheduling for grid computing[D]. Monash University, Australia, 2002.
  • 5SANDHOLM T. Making markets and democtacy work: a story of incentives and eomputing[C]//The International Joint Conference on Artificial Intelligence (IJCAI-03), c2003: 1649-1671.
  • 6曹鸿强,肖侬,卢锡城,刘艳.一种基于市场机制的计算网格资源分配方法[J].计算机研究与发展,2002,39(8):913-916. 被引量:69
  • 7WALDSPURGER C, HOG(3 T, HUBERMAN B, et al. Spawan: a distributed computation economy [J]. IEEE Transactions on Sottware Engineering, 1992, 18(2): 103-117.
  • 8李世勇,杨冬,秦雅娟,张宏科.基于效用最大化的网络跨层映射[J].软件学报,2011,22(8):1855-1871. 被引量:6
  • 9师雪霖,徐恪.云虚拟机资源分配的效用最大化模型[J].计算机学报,2013,36(2):252-262. 被引量:78
  • 10KENYON C, CHELIOTIS G. Grid resource commercialization: eco- nomic engineering and delivery scenarios grid resource management: state of the art and research issues [M]. Kluwer, 2003.

二级参考文献175

共引文献1099

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部