期刊文献+

视频检索中图像信息量度量 被引量:4

Image information measurement for video retrieval
下载PDF
导出
摘要 综合考虑信息量度量的速度、性能要求,提出了相适应的显著图、多特征融合模型;基于区域划分融入空间关系,提出了分块信息熵的图像信息量度量方法(SEII);构建了信息量度量的标注数据集,并设计了性能验证方法。实验结果表明该度量方法符合人眼视觉的评价结果。度量方法在实际视频检索系统中进行对比应用测试,测试表明m AP提高4.4%,检索速度提高1.5倍。 To meet the speed and performance requirements, Sub-region entropy based image information measurement (SEII) method was proposed, which integrates the salient region detection, region division and features fusion. And, per- formance evaluation method was designed and many experiments were carried out, proving SEII coordinates with human vision evaluation. Also, SEII is evaluated in a real video retrieval system, which shows increase about 4.4% of mAP with 1.5 times speedup.
出处 《通信学报》 EI CSCD 北大核心 2016年第2期80-87,共8页 Journal on Communications
基金 国家自然科学基金资助项目(No.61273247 No.61303159 No.61271428) 国家高科技研究发展计划("863"计划)基金资助项目(No.2013AA013205)~~
关键词 视频检索 关键帧选择 图像信息量 显著区域 多特征融合 video retrieval, key frame selection, image information, salient region, features fusion
  • 相关文献

参考文献23

  • 1SHAHRARAY B, GIBBON D C. Automatic generation of pictorial transcripts of video programs[C]//Proc SPIE. c1995:512-518.
  • 2WOLF W. Key frame selection by motion analysis[C]//Acoustics, Speech, and Signal Processing, International Conference, c1996: 1228-1231.
  • 3SAAD M A, BOVIK A C, CHARRIER C. Blind image quality as- sessment: a natural scene statistics approach in the DCT domain[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352.
  • 4KOCH C, ULLMAN S. Shifts in selective visual attention: towards the underlying neural circuitry[C]//Matters of Intelligence. c1987:115-141.
  • 5ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual atten- tion for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998,20(11):1254-1259.
  • 6MA Y F, ZHANG H J. Contrast-based image attention analysis by using fuzzy growing[C]//The eleventh ACM international conference on Multimedia. c2003:374-381.
  • 7ZHAI Y, SHAH M. Visual attention detection in video sequences using spatiotemporal eues[C]//14th annual ACM international conference on Multimedia. c2006:815-824.
  • 8CHENG M M, ZHANG G X, MITRA N J, et al. Global contrast based salient region detection[C]//Computer Vision and Pattern Recogni- tion(CVPR), c2011:409-416.
  • 9HOU X, HAREL J, KOCH C. Image signature: highlighting sparse salient regions[J]. IEEE Transactions on, Pattern Analysis and Ma-chine Intelligence, 2012, 34( 1): 194-201.
  • 10MAI L, NIU Y, L1U F. Saliency aggregation: a data-driven ap- proach[C]//IEEE Conference. Computer Vision and Pattern Recogni- tion(CVPR), c2013:1131-1138.

同被引文献33

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部