期刊文献+

基于PSO-LSSVM的水松纸透气度软测量

Soft sensing of the tipping paper porosity based on PSO-LSSVM
原文传递
导出
摘要 针对打孔水松纸透气度检测问题,考虑到样本数据较少,相关性较强等因素,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)算法优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)关键参数的软测量模型(PSO-LSSVM),用于拟合孔面积与水松纸透气度之间的关系,从而实现对水松纸透气度的检测。基于实际生产数据的仿真实验和算法比较验证了PSO-LSSVM的有效性。 For the problem of detection of tipping paper porosity testing, considering that the number of sample data is not enough and the correlation of sample data is strong, we put forward a soft Sensing model that optimizes key parameters of Least Squares Support Vector Machine(LSSVM) based on Particle Swarm Optimization(PSO). This model fits the relationship of the area of hole and the tipping paper porosity to test porosity. Based on simulation experiments and comparing algorithm of actual production data, it is proved that the PSO-LSSVM is effective.
出处 《计算机与应用化学》 CAS 2016年第2期177-182,共6页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(60904081) 云南省应用基础研究计划面上项目(2015FB136) 云南省中青年学术和技术带头人后备人才资助项目(2012HB011) 昆明理工大学学科方向建设资助项目(14078212)
关键词 软测量 粒子群优化算法 最小二乘支持向量机 水松纸透气度 soft sensor particle swarm optimization least squares support vector machine tipping paper porosity
  • 相关文献

参考文献10

  • 1GUO Li. The Research of Tipping Paper Porosity Online Detection System[D]. Kunming University of Science and Techinology, 2002.
  • 2LIU Shoufeng. The Research of the Application of image processing technology in the detection of porosity[D]. Kumming: Kunming University of Science and Techinology, 2007.
  • 3JIANG Changjie, DAI Suiyu. Study on the porosity owing to implanting the dyadic image treatment technology[J]. Master Thesis of Kunming University of Science and Technology, 2007.
  • 4XU Fangzhou, PAN Feng. Soft Sensing of the Parameters in Sewage Disposal System Based on PSO-LSSVM[J]. Journal of Jiangnan University, 2010, 9(3):253-256.
  • 5WEN Tingxin, ZHANG Bo. PSO-LSSVM model for Slope Stability Prediction of Open Pit Coal Mine[J]. Nonferrous Metals(Mine Section), 2014, 66(1):51-56.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 7LI Fangfang, ZHAO Yingkai and YAN Xin, The toolbox and its application based on Matlab of least squares support vector machine[J]. Computer Application, 2006,26(12):358-360.
  • 8Kennedy J, Eberhart R. Particle swarm optimization[A]. Proceeding of 1995 IEEE International Conference on Neural Networks[C]. Perth, W A: IEEE Press, 1995.
  • 9SHI Y H, EBERHART R C. Parameter selection in particle swarm optimization[A]. Annual Conference on Evolutionary Programming[C]. San Diego: [s. n.], 1998.
  • 10李哲龙.舰船装备维修费用预测的PSO-LSSVM方法研究[J].舰船电子工程,2013,33(8):129-131. 被引量:2

二级参考文献10

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部