期刊文献+

基于自回归模型与神经网络模型的车流量预测对比 被引量:4

Comparison of traffic flow prediction based on AR model and BP model
下载PDF
导出
摘要 车流量建模是车联网(vehicular Ad Hoc network,VANET)路由、多媒体接入协议、无线算法设计的基础。准确的车流量模型将对智能交通系统(intelligent transportation system,ITS)实时调度和车联网的信息安全起到十分重要的作用。基于上海市的交通流量数据,利用自回归(auto regressive,AR)模型与神经(back-propagation,BP)网络模型对车流量实测数据进行了仿真对比,给出了相应的预测结果。研究发现,两个模型均能有效地对数据进行跟踪与预测,但对不同时段数据预测的准确性有所不同。研究结果将为未来智能交通应用、车联网的理论研究等提供有力依据。 Traffic flow modeling plays an important role in routing, MAC algorithm and protocol designs in vehicular Ad Hoc networks (VANET). An accurate traffic flow model is crucial to traffic management of an intelligent transportation system (ITS) and information safety in a VANET. Based on Shanghai's traffic flow data, the performance of the two different models was compared using auto regressive (AR) model and back-propagation (BP) network model, and the corresponding prediction result was given. Research finds that both of the two models can efficiently predict the traffic data, but they have different prediction accuracy for the data of different periods. The research result will provide support for future research on ITS and VANET.
出处 《电信科学》 北大核心 2016年第2期55-59,共5页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61471346) 上海市自然科学基金资助项目(No.14ZR1439700)~~
关键词 车联网 智能交通 自回归模型 神经网络模型 交通流量预测 VANET, ITS, AR model, BP network model, traffic flow predicting
  • 相关文献

参考文献9

  • 1中华人民共和国国家统计局.2014年国民经济和社会发展统计公报[R/OL].(2015-02-26)[2015-02-26].http://www.stats.gov.cn/tjsj/zxtb/201502/t20150226_685799.html.
  • 2中华人民共和国交通运输部.2014年交通运输行业发展统计公报[R/OL].(2015-04-30)[2015-04-30].http://www.moc.gov.cn/zfxxgk/bns~/zhghs/201504/t20150430_1810598.html.
  • 3向前忠.生长曲线模型在高速公路诱增交通量预测中的应用[J].公路交通技术,2007,23(2):161-163. 被引量:11
  • 4BOX G E P, JENKINS G M, REINSEL G C. Time series analysis: forecasting and control [J]. Journal of Marketing Research, 1994, 14(2) :556-569.
  • 5WANG Y, WU X. An adaptive glucose prediction method using auto-regressive (AR) model and Kalman fiher[C]//IEEE-EMBS International Conference on Biomedical and Health Informaties (BHI), Janurary 5-7, 2012, Hong Kong, China. New Jersey: IEEE Press, 2012:556-569.
  • 6陈国强,赵俊伟,黄俊杰,刘万里.基于Matlab的AR模型参数估计[J].工具技术,2005,39(4):39-40. 被引量:26
  • 7JUVA I, SUSITAIVAL R, PEUHKURI M, et al. Traffic characterization for traffic engineering purposes: analysis of funet data[J], Next Generation Internet Networks, 2005:404-411.
  • 8RUMELHART D E, MCCLELLAND J L. The PDP research group parallel distributed processing [J]. IEEE, 1998 (1): 443-453.
  • 9FORBES G J, HALL F L. The applicability of catastrophe theory in modelling freeway traffic operations [J]. Transportation Research Part A: General, 1990, 24(5) :335-344.

二级参考文献3

共引文献36

同被引文献38

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部