期刊文献+

基于数据卸载策略的能量优化方法在移动代理路径规划中的应用

Application of mobile agent itinerary planning based on data offloading strategy of energy optimal method
下载PDF
导出
摘要 提出了移动代理数据卸载策略,对无线传感器网络中现有移动代理规划路径进行优化,根据卸载规则决定是否将数据分组分离通过优化的卸载路径传递,卸载数据的移动代理通过原路径访问数据源节点。使用移动代理经典算法IEMF(itinerary energy minimum for first-source-selection)进行大量的仿真实验,结果显示,提出的数据卸载策略能有效地解决数据源节点能量消耗过快的问题,延长数据源节点的生存期。 A data offloading strategy for optimizing itinerary planning of MA (mobile agent)was proposed. When MA visits source nodes based on data offloading strategy, it decides whether to transfer data package via optimized offloading itinerary and MA(mobile agent) visits data source nodes via conventional itinerary. Based on considerable simulations with the representative MA itinerary planning, i.e. itinerary energy minimum for first-source-selection (IEMF), it verifies that the problem of excessive energy consumption from source nodes can be efficiently solved and the lifetime of source nodes is prolonged.
出处 《电信科学》 北大核心 2016年第2期68-74,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61300224) 河南省重点科技攻关计划基金资助项目(No.132102210483 No.102102210178) 河南省基础与前沿技术研究计划基金资助项目(No.122300410344) 河南省教育厅自然科学研究计划基金资助项目(No.2008A520013 No.2011A520023)~~
关键词 数据卸载 移动代理 路径规划 无线传感器网络 data offloading, mobile agent, itinerary planning, wireless sensor network
  • 相关文献

参考文献16

  • 1VARAKLIOTIS S, HAILES S, DENARDI R, et al. UAV and cognitive radio technologies in the emergency services arena[J]. British Association of Public Safety Communications Officials, 2010(11).
  • 2ABDULLA A E A A, FADLULLAH Z M, NISHIYAMA H, et al. An optimal data eonection technique for improved utility in UAS-aided networks[C]//2014 IEEE International Conference on Computer Communications, April 27-May 2, 2014, Toronto, Canada. New Jersey: IEEE Press, 2014.
  • 3PADILLA P, CAMACHO J, MACIA-FERNANDEZ G, et al. On the influence of the propagation channel in the performance ofenergy-efficient geographic routing algorithms for wireless sensor networks (WSN) [J]. Wireless personal communications, 2013, 70(1): 15-38.
  • 4AHMAD A, LATIF K, JAVAIDL N, et al. Density controlled divide-and-rule scheme for energy efficient routing in wireless sensor networks [C]//2013 26th Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2013), May 5-8, 2013 Regina, Saskatchewan, Canada. New Jersey: IEEE Press, 2013.
  • 5苏金树,郭文忠,余朝龙,陈国龙.负载均衡感知的无线传感器网络容错分簇算法[J].计算机学报,2014,37(2):445-456. 被引量:80
  • 6郭文忠,苏金树,陈澄宇,陈国龙.无线传感器网络中带复杂联盟的自适应任务分配算法[J].通信学报,2014,35(3):1-10. 被引量:10
  • 7CHEN M, GONZALEZ S, ZHANG Y, et al. Multi-Agent Itinerary Planning for Wireless Sensor Networks[M]. Heidelberg: Springer, 2009, 22: 584-597.
  • 8CHEN M, YANG L T, KWON T, et al. Itinerary planning for energy-efficient agent communication in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60 (7): 3290-3299.
  • 9QI H R, WANG F Y. Optimal itinerary analysis for mobile agents in ad hoc wireless sensor networks[J]. Proceedings of the IEEE, 2001.
  • 10CAI W, CHEN M, HARA T, et al. A genetic algorithm approach to multi-agent itinerary planning in wireless sensor networks[J]. Mobile Networks and Applications, 2011, 16(6):782-793.

二级参考文献29

  • 1张国富,蒋建国,夏娜,苏兆品.基于离散粒子群算法求解复杂联盟生成问题[J].电子学报,2007,35(2):323-327. 被引量:33
  • 2朱敬华,高宏.无线传感器网络中能源高效的任务分配算法[J].软件学报,2007,18(5):1198-1207. 被引量:21
  • 3刘梅,李海昊,沈毅.无线传感器网络空中目标跟踪任务分配技术的研究[J].宇航学报,2007,28(4):960-965. 被引量:14
  • 4AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wire- less sensor networks: a survey[J]. Computer Networks, 2002, 38(4): 393-422.
  • 5YU Y, VIKTOR K E Energy-balanced task allocation for collaborative processing in wireless sensor networks[J]. Mobile Networks and Ap- plications, 2005, 10(12): 115-131.
  • 6TIAN Y, BOANGOAT J, EKICI E, et al. Real-t!me task mapping and scheduling for collaborative in-network processing in DVS-enabled wireless sensor networks[A]. Proc of the 20th International Parallel and Distributed Processing Symposium[C]. Island, Greece, 2006.
  • 7TIAN Y, GU Y Y, EKICI E, et al. Dynamic critical-path task mapping and scheduling for collaborative in network processing in multi-hop wireless sensor networks[A]. Proc of the 2006 International Confer- ence on Parallel Processing Workshops[C]. Columbus, Ohio, USA,2006.215-222.
  • 8ZENG Z W, LIU A F, LI D, et al. A highly efficient DAG task sched- uling algorithm for wireless sensor networks[A]. Proc of the 9th In- ternational Conference for Young Computer Scientists[C]. 2008. 570-575.
  • 9ABDELHAK S, GURRAM C S, GHOSH S, et al. Energy balancing task allocation on wireless sensor networks for extending the life- time[A]. Proc of the 2010 IEEE International 53rd Midwest Sympo- sium on Circuits and Systems[C]. Seattle, Washington, 2010. 781-784.
  • 10GUO W Z, XIONG N X, CHAO H C, et al. Design and analysis of self-adapted task scheduling strategies in wireless sensor networks[J]. Sensors, 2011, 11 (7): 6533-6554.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部