期刊文献+

LGP-SA:分布式环境下基于模拟退火的大规模图划分算法 被引量:1

LGP-SA:Graph partition algorithm based on simulated annealing in large-scale graph processing
下载PDF
导出
摘要 针对大规模图数据的分布式计算,首先需要进行图划分。当前大规模图划分方法采用顶点转移策略来减少分区间的边割数以降低通信开销,但容易陷入局部最优,引入模拟退火的方法进行顶点转移后,极大地避免了局部最优的陷阱,也极大地防止了顶点无效转移,更好地降低了通信开销。对比实验显示,本算法划分大规模图的边割率有了极大的改进,并用PageRank算法验证了算法的有效性和可行性。 Distributed computing for large-scale graph data need to partition the graph firstly. The current methods of large-scale graph partitioning is to reduce the edge cut in order to lessen communication overhead by using vertex transfer strategies, but easily to fall into local optimum. Simulated annealing has a great probability to avoid the trap of local optimum and prevent vertices from invalid transfer which was introduced to transfer vertices. This method decreased communication overhead great/y. Comparative experiments show that the proposed algorithm has made a great improvement in reducing edge cut rates in large scale graph partition field. PageRank algorithm was also used to verify the effectiveness and feasibility of this method.
出处 《电信科学》 北大核心 2016年第2期83-91,共9页 Telecommunications Science
基金 浙江省自然科学基金资助项目(No.LY16F020003) 国家自然科学基金资助项目(No.61572266)~~
关键词 图划分 Giraph 模拟退火 大规模图 BSP graph partition, Giraph, simulated annealing, large-scale graph, BSP
  • 相关文献

参考文献15

  • 1许金凤,董一鸿,王诗懿,何贤芒,陈华辉.大规模图数据划分算法综述[J].电信科学,2014,30(7):100-106. 被引量:7
  • 2CH1NG A. Giraph: Large-scale graph processing infrastructure on Hado.op [C] // Hadoop Summit 2011, Santa Clara, CA, USA. [S.l.:s.n:.], 2011.
  • 3MALEW1CZ G, AUSTEN M H, BIK A J C, et al. Pregel: a system for large-scale graph processing[C]//2010 ACM SIGMOD International Conference on Management of data, June 6-10, 2010, Indianapolis, Indiana, USA. New York: ACM Press, 2010: 135-146.
  • 4周爽,鲍玉斌,王志刚,冷芳玲,于戈,邓超,郭磊涛.BHP:面向BSP模型的负载均衡Hash图数据划分[J].计算机科学与探索,2014,8(1):40-50. 被引量:5
  • 5KHAYYAT Z, AWARA K, ALONAZI A, et al. Mizan: a system for dynamic load balancing in large-scale graph processing[C]// The 8th ACM European Conference on Computer Systems, April 15-17, 2013, Prague, Czech. New York : ACM Press, 2013: 169-182.
  • 6UGANDER J, BACKSTROM L. Balanced label propagation for partitioning massive graphs [C]// The 6th ACM International Conference on Web Search and Data Mining, February 6-8, 2013, Rome, Italy. New York: ACM Press, 2013: 507-516.
  • 7VAQUERO L, CUADRADO F, LOGOTHETIS D, et al. xDGP: a dynamic graph processing system with adaptive partitioning[J]. Eprint Arxiv, 2013(9).
  • 8BAO N T, SUZUMURA T. Towards highly scalable pregel-basedgraph processing platform with xl0 [C]//The 22nd International Conference on World Wide Web Companion, May 13-17, 2013, Rio de Janeiro, Brazil. Geneva: International World Wide Web Conferences Steering Committee, 2013: 501-508.
  • 9SALIHOGLU S, WIDOM J. GPS: A graph processing systemiC] //The 25th International Conference on Scientific and Statistical Database Management, July 29-31, 2013, Baltimore, Maryland, USA. New York: ACM Press, 2013.
  • 10VALIANT L G. A bridging model for parallel computation [J]. Communications of the ACM, 1990, 33(8): 103-111.

二级参考文献1

共引文献9

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部