期刊文献+

过冷度和耦合系数对枝晶生长速度及形貌的影响

Effects of Super-cooling Degree and Coupling Coefficient on Dendrite Growth Rate and Morphology
下载PDF
导出
摘要 采用耦合溶质场、温度场的相场模型,对金属镍凝固过程中枝晶生长进行模拟,研究了过冷度和耦合度对枝晶生长速度及形貌的影响。结果表明:过冷度和耦合度比较小时,整个枝晶形貌近似球形,枝晶生长速度随着过冷度和耦合度的增加而增加,主枝的增长速度优于其他方向,整个枝晶由开始近似球形慢慢变为星形;随过冷度继续增大,主枝的生长优势慢慢消失,出现更多侧枝,整体形貌又开始向球形过渡,直至第二侧枝速度赶上主枝,第三侧枝则完全消失。 The dendrite growth of nickel solidification process was simulated by the phase-field model coupling with solute field and temperature field, and the effects of super-cooling degree and coupling coefficient on dendrite growth rate and morphology were investigated. The results show that the dendrite morphology approximates sphere when the super-cooling degree and coupling coefficient is small. The dendrite growth rate increases with the increase of super-cooling degree and coupling coefficient. The main branch growth rate is faster than the other direction, and the dendrite morphology slowly begin to become star from sphere. Along with the super-cooling degree continues to increase, the main branch growth advantage disappears and more lateral branches appear, the dendrite morphology begin to become spherical. Until the second lateral branch catch up with the main branch rate, the third lateral branch has completely disappeared.
出处 《铸造技术》 CAS 北大核心 2016年第2期320-322,共3页 Foundry Technology
关键词 相场法 过冷度 耦合系数 枝晶生长 phase-field method super-cooling degree coupling coefficient dendrite growth
  • 相关文献

参考文献5

  • 1Oguchi K,Suzuki T.Free dendrite growth of Fe-0.5mass%C alloy three-dimensional phase-field simulation and LKT model[J].ISIJ International,2007,47:1432-1435.
  • 2赵宇宏,周力,王明光,牛晓峰,赵宇辉,侯华,任巨良.纯Ni枝晶生长过程的相场法数值模拟[J].铸造技术,2010,31(2):221-224. 被引量:2
  • 3梁晋洁.纯金属凝固过程的相场法研究[D].西安:西北工业大学,2010.
  • 4Willnecker R,Herlach D M,Feuerbacher B.Evide nce of nonequilibrium processes in rapid solidification of undercooled metals[J].Physical Review Letter,1989,62:2707-2710.
  • 5Gonzeález-Cinca R.Phase-field models in interfacial pattern formation out of equilibrium[J].Physical A,2002,314:284-289.

二级参考文献12

  • 1Takuya Uehara, Robert F. Sekerka. Phase field simulations of faceted growth for strong anisotropy of kinetic coefficient [J]. Journal of Crystal Growth, 2003,254 251-261.
  • 2Singer H M, Loginova I S, Bilgram J H, et al. Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions [J]. Journal of Crystal Growth, 2006,296 : 58-68.
  • 3Mathis P. Three-dimensional phase-field simulations of directional solidification[J]. Journal of Crystal Growth, 2007,303 : 49-57.
  • 4Kim S G, Kim W T. Phase field modeling of dendritic growth with high anisotropy [J]. Journal of Crystal Growth, 2005,263 : 620-626.
  • 5H Hou, DJu, YH Zhao, etal. Numerical simulation for dendrite growth of binary alloy with phase field method [J]. Journal Of materials science technology, 2004,20: 45- 48.
  • 6Warren J A, Boetinger W J. Prediction of dendritic growth and mierosegregation patterns in a binary alloy using the phase-field method[J]. Acta Metall Mater, 1995,43 (2) : 689-703.
  • 7Conti M. Growth of a needle crystal from an undereooled alloy melt[J]. Phys Rev(E), 1997,56(3) : 3 197-3 202.
  • 8Tiaden J. Phase-field simulation of the peritectic solidification of Fe-C [J]. Journal of crystal Growth, 1999,198/199:1 275-1 280.
  • 9Beckermann C, Diepers H J, Steubbac G I, et al. Modeling melt convection in phase-field simulation of solidification [J]. Journal of Computtational Physics, 1999,154:468-496.
  • 10Boettinger W J, Warren J A. Simulation of the cell to plane front transition during directional solidification at high velocity[J]. Journal of Crystal Growth, 1999,200 : 583-591.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部