期刊文献+

海砂矿深度还原--磁选分离实验研究 被引量:5

Experimental research on the deep reduction-magnetic separation of ironsand
原文传递
导出
摘要 应用化学分析、扫描电镜观察和X射线衍射分析方法研究海砂矿的基础物性.采用煤基深度还原-磁选工艺,系统考察矿粉中Fe和Ti的还原分离行为,并明确还原温度、还原时间、碳氧比、磁感应强度和磨矿粒度对还原磁选效果的影响规律.结果表明:海砂矿主要由钛磁铁矿和钛赤铁矿组成;较优的还原分离工艺参数为还原温度1300℃、还原时间30 min、碳氧摩尔比1.1、磁感应强度50 mT和磨矿细度-0.074 mm质量分数86.34%.在此工艺条件下,可以获得金属化率94.23%的还原产物,磁选指标分别达到精矿铁品位97.19%和尾矿钛品位57.94%,对应的铁、钛回收率为90.28%和87.22%,有效地实现海砂矿中铁钛元素的分离富集. The basic characteristics of ironsand were systematically studied by chemical analysis, scanning electron microscopy and X-ray diffraction. A series of experiments were performed to investigate reduction-magnetic separation for Fe and Ti from iron- sand. The effects of reduction temperature, reduction time, carbon ratio, magnetic density, and grinding fineness on the reduction- magnetic separation process were investigated. It could be found that the ironsand mainly consisted of titanomagnetite and titanohema- tite. The optimal process parameters were obtained as follows: reduction temperature, 1300 ℃ ; reduction time, 30 min; C/O molar ratio, 1.1; magnetic density, 50 mT; and the grinding fineness of -0. 074 μm, 86. 34%. Under such conditions, the metallization rate, the iron grade of magnetic substance and the iron recovery reached to 94.23%, 97.19% and 90. 28%, respectively, and the titanium grade of non-magnetic substance and the titanium recovery were 57. 94% and 87.22% , respectively. The effective separation of iron and titanium could be achieved in this reduction-magnetic separation process.
出处 《工程科学学报》 EI CSCD 北大核心 2016年第2期181-186,共6页 Chinese Journal of Engineering
基金 国家重点基础研究发展计划资助项目(2012CB720400)
关键词 海砂矿 铁矿石还原 磁选分离 精矿铁 ironsand iron ore reduction magnetic separation iron concentrate
  • 相关文献

参考文献10

  • 1吕庆,王文山,金玉臣,李福民,高峰.海砂配比对承钢钒钛烧结矿冶金性能的影响[J].钢铁钒钛,2010,31(3):80-83. 被引量:8
  • 2Wright J B. Iron-titanium oxides in some New Zealand ironsands. N Z J C, eol Geophys, 1964, 7(3) : 424.
  • 3Wright J B, Lovering J F. Electron-probe micro-analysis of the iron-titanium oxides in some New Zealand ironsands. Mineral Mag, 1965, 35(272) : 604.
  • 4Wright J B. Heating experiments on New Zealand ironsands and the presence of pseudobrookite. N Z J Geol Geophys, 1967, 10 (3) : 659.
  • 5Longbottom R J, Monaghan B J, Nightingale S A, et al. Strength and bonding in reduced ironsand-coal compacts, lronmaking Steel- making, 2013, 40(5) : 381.
  • 6Longbottom R J, Monaghan B J, Mathieson J G. Development of' a bonding phase within titanomagnetite-coal compacts. IS1J lnt, 2013, 53(7) : 1152.
  • 7孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006,35(3):11-13. 被引量:205
  • 8徐承焱,孙体昌,杨慧芬,路超,曹志成.某难选铁矿石直接还原焙烧磁选研究[J].矿冶工程,2010,30(3):36-39. 被引量:12
  • 9高鹏,韩跃新,李艳军,孙永升.白云鄂博氧化矿石深度还原-磁选试验研究[J].东北大学学报(自然科学版),2010,31(6):886-889. 被引量:38
  • 10姜涛,余少武,薛向欣,等.承德钒钛磁铁矿同相还原一磁选分离研究//第九届中国钢铁年会论文集.北京,2013:1.

二级参考文献21

共引文献252

同被引文献47

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部