期刊文献+

单站无源定位的一种改进的粒子滤波算法 被引量:11

An improved particle filter algorithm of single observer passive location
下载PDF
导出
摘要 为了加快无源定位的速度,提高定位精度,针对标准粒子滤波中的重要性函数和重采样所导致的样本枯竭问题,本文结合遗传算法和粒子滤波算法,提出一种改进的的粒子滤波算法,该算法优化了粒子在状态空间的分布特性,增加了样本的多样性,克服了重采样过程中的粒子退化问题,并针对二维平面机动模型进行仿真。仿真实验表明,本文算法能够适用于机载无源定位系统,能够有效的提高滤波精度,跟踪性能优于经典的粒子滤波算法。 In order to accelerate the rate of passive positioning, improve positioning accuracy for classical particle filter in the sample depletion importance sampling function and punch caused, this paper genetic algorithm and particle filter algorithm, an improved particle filtering algorithm the algorithm optimizes the distribution characteristics of the particles in the state space, increasing the diversity of the sample to overcome the re-sampling process of particle degradation, and the simulation model for the two-dimensional plane maneuvering. Simulation results show that the algorithm can be applied to airborne passive positioning system that can effectively improve the filtering accuracy, tracking performance is better than the classical particle filter.
出处 《电子设计工程》 2016年第5期107-109,共3页 Electronic Design Engineering
关键词 粒子滤波 重采样 遗传算法 无源定位 particle fiher re-sampling genetic algorithms passive location
  • 相关文献

参考文献9

  • 1邱汇.单站无源定位技术研究[J].电子科技,2014,27(1):78-80. 被引量:4
  • 2Kim P,Huh L. Kalman Filter for Beginners:with Maflab Examples[R]. Georgia:CreateSpace, 2011.
  • 3Gustafsson F. Particle filter theory and practice with positi- oning applications[J]. IEEE Aerospace and Electronic Syste- ms Magazine, 2010,25 (7) :53-81.
  • 4Sarkka S. Bayesian Filtering and Smoothing[M]. Cambridge: Cambridge University Press,2013.
  • 5袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77
  • 6Rudolph van der Merwe,Eric Wan. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models[D]. OGI School of Science Engineering, Oregon Heal- th Science University, Beaverton, Oregon, 97006:864-890.
  • 7Xu B, Chen Q,Zhu J, et al. Ant estimator with application to target tracking[J]. Signal Processing,2010,90(5):1496-1509.
  • 8Zhong J, Fung Y, Dai M. A biologically inspired improvement strategy for particle filter:Ant colony optimization assisted particle filter[J]. International Journal of Control,Automation, and Systems,2010,8(3):519-526.
  • 9叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43

二级参考文献23

  • 1杨莘元,郑思海.基于运动辐射体TOA和DOA测量的单站被动定位算法[J].电子学报,1996,24(12):66-69. 被引量:37
  • 2南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 3G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25.
  • 4Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995.
  • 5M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356.
  • 6I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com.
  • 7S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997.
  • 8A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com.
  • 9R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000.
  • 10N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,.

共引文献120

同被引文献64

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部