期刊文献+

双重伪补Ockham代数的理想与滤子同余关系的注记 被引量:5

A Note on the Ideal and Filter Congruence Relations on Double Pseudo-Complement Ockham Algebras
下载PDF
导出
摘要 依据双重伪补Ockham代数的核理想和余核滤子判别定理以及具有核理想和余核滤子同余关系表达式,研究了双重伪补Ockham代数的核理想和余核滤子同余关系的同余置换性,证明了双重伪补Ockham代数核理想同余关系和余核滤子同余关系是同构的. By using the discriminant theorem of the kernel ideals and co-kernel filters on a double Pseudo-complemented Ockham algebra, the expression of the kernel ideals and co-kernel filters congruence relations, the congruence permutation of kernel ideals and co-kernel filters are studied. It is shown that the kernel ideals congruence and the co-kernel filters congruence relations of double Pseudo-comolemented Ockham algebras are isomorphic.
出处 《汕头大学学报(自然科学版)》 2016年第1期35-40,共6页 Journal of Shantou University:Natural Science Edition
关键词 OCKHAM代数 伪补代数 双重伪补Ockham代数 核理想 余核滤子 同构 Ockham algebra Pseudo-complemented algebra double Pseudo-complement Ockham algebra kernel ideal co-kernel filter isomorphism
  • 相关文献

参考文献10

二级参考文献23

  • 1Blyth T S, Varlet J C. Ockham Algebras[M]. Oxford: Oxford University Press, 1994.
  • 2Rodrigues P J V, Silva H J. Ockham congruences whose quotient algebras are boolean[J]. Communications in Algebra, 2003,31:5391-5404.
  • 3Adams M E, Katrinak T. A note on subdirectly irreducible double p-algebras[J]. J. Austral. Math. Soc., 1983,35:46-58.
  • 4Beazer R. The determination congruence on double p-algebras[J]. Algebra Universalis, 1976,6:121-129.
  • 5Davey B A. Subdirectly irreducible distributive double p-algebras[J]. Algebra Universalis, 1978,8:73-88.
  • 6Varlet J C. Regularity in double p-algebras[J]. Algebra Universalis, 1984,18:95-105.
  • 7Blyth T. S., Fang J., Varlet J. C., Ockmen algebras with pseudocomplementation, Communications in Algebra,1997, 25: 3605-3615.
  • 8Blyth T. S., Varlet J. C., Ockmen algebras, Oxford: Oxford University Press, 1994.
  • 9Blyth T. S., Ideals and filters of pseudocomplemented semilattics, Proc. Edinburgh, Math. Soc., 1980, 23:301-316.
  • 10Sankappanavar H. P., Congruence lattice of pseudocomplemented semilattics, Algebra Universalis, 1979, 9:304-314.

共引文献22

同被引文献23

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部